search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
42 February / March 2018 Results and Discussion


The results show that this sample has 601.226 µg of THC per mL. This results in the sample having a total THC content of 18%.


Figure 3: Chromatogram showing the terpenes and cannabinoids in a single run Table 1: Compound list and the corresponding results Peak Number Compound


1 2 4 6 7 8 9


10 Total Myrcene


delta-3-Carene Geraniol


beta-caryophyllene Alpha-Humulene cbd


delta 9 thc cbg


Retention Time [min] 2.463 2.737 5.636 5.981 6.524


13.356 14.284 14.843


Response Amount [mg/l]


0.635 1.167 0.363 0.478 0.212 0.709


18.523 0.811


2.536 9.605 5.496 7.793


15.551 26.620


601.286 24.035


692.922


The high level of THC, shown in Figure 6, indicates that if consumed this would have more of the psychoactive effects. The results show the ratios of THC and CBD, providing information about the potency of the product. The concentration and profile of the terpenes, see Figure 7, that are present provides information about the flavour profile to guide users about the sort of flavour characteristics that can be expected from the cannabis when consumed. The different terpenes present and their levels will define how that particular strain of cannabis will smell and taste. For example a strain that shows high levels of limonene may will have citrus lemony aroma (limonene is commonly also found in lemons) or a high level of myrcene will give flavours similar to beer (myrcene is also found commonly in hops).The levels of terpenes can also be used as a guide to understand the quality of the product. For example, low levels could indicate that it has not been dried correctly.


Harnessing this information, manufacturers can verify the quality of cannabis samples. For example, Shamanics aim is to upgrade the entire cannabis scene in the Netherlands using GC in order to protect and grow the market. As a result of the robust testing methods, Shamanics has set themselves apart from their competitors in the Netherlands. Testing remains very rare in the Netherlands, but there are other companies using techniques such as near-infrared spectroscopy, SFC and HPLC to conduct quality testing.


Figure 4: Cannabis sample added to methanol


Figure 5: The 200 Series GC at Shamanics


Figure 6: Cannabinoid detail from Chromatogram


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68