search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
INTERMEDIATE PHASE + GRADE 7 OXFORD SUCCESSFUL


MATHEMATICS OUP SA


Oxford Successful Mathematics is a trusted CAPS-aligned series. 


Learner’s Book that:  includes a wealth of worked examples  has strategies to help explain the content  teaches learners correct mathematical practice.


Teacher’s Guide that:  includes planning tools for different learning and teaching styles  offers teaching tips  helps explain the activities  includes assessment tools.


GRADE 4 Learner’s Book


Learner’s Book e-pub3


Teacher’s Guide Leerdersboek


Leerdersboek e-pub3 Onderwysersgids


GRADE 5 Learner’s Book


Learner’s Book e-pub3


Teacher’s Guide Leerdersboek


Leerdersboek e-pub3 Onderwysersgids


GRADE 6 Learner’s Book


Learner’s Book e-pub3


Teacher’s Guide Leerdersboek


Leerdersboek e-pub3 Onderwysersgids


GRADE 7 Learner’s Book


Learner’s Book e-pub3


*Teacher’s Guide *Leerdersboek


*Onderwysersgids


978 0 19 904285 2 978 0 19 907358 0 978 0 19 905790 0 978 0 19 905616 3 978 0 19 041236 4 978 0 19 599585 5


978 0 19 904346 0 978 0 19 907359 7 978 0 19 599810 8 978 0 19 599642 5 978 0 19 041184 8 978 0 19 904841 0


978 0 19 904865 6 978 0 19 907360 3 978 0 19 904701 7 978 0 19 905026 0 978 0 19 041186 2 978 0 19 905384 1


978 0 19 599644 9 978 0 19 907382 5 978 0 19 905676 7 978 0 19 904791 8 978 0 19 599671 5


*The full list of e-pdf titles is available in the price list.


Mathematics CORE CLASSROOM COURSE


Oxford Successful Mathematics Grade 5 Learner’s Book


Primary Catalogue 43


INTERMEDIATE PHASE + GRADE 7


6 1 234; 1 244; 1 254; 1 264; 1 274: The underlined digits show that the number of tens increases by 1; so the numbers to follow are 1 284; 1 294; 1 304; 1 314 and so on.


7 3 841; 3 941; 4 041; 4 141; 4 241: The underlined digits show that the number of hundreds increases by 1; so the numbers to follow are 4 341; 4 441; 4 541; 4 641; and so on.


541; 4 641; and


You will remember that we can represent numbers in different ways. Let’s do an example


5 4 6 can represent numbers in different ways.


Look at how we repesent these numbers: 2


hese numbers: 1


H T


H


Th U


U H H


T Th


U U U


H T


Th H U


45 5 Th H TU 3 Th HT U


1 represents 3 636 4 represents 2 238


Activity 1


1 Which whole numbers below are odd and which are even? Prove your answer. a 9 181 d 2 999 g 1 907 j 4 088


mbers belo


b 8 176 e 5 273 h 7 474 k 6 975


b 8 12 Term 1 2014/09/11 04:10:01 AM


c 4 750 f 4 812 i 4 775 l 7 196


2 represents 5 709 5 represents 1 125


2 represents 5 5 represents


3 represents 6 956


2 Find a pattern within the following number patterns. Use the pattern and write down the next three numbers. a 4 028; 4 030; 4 032; 4 034; 4 036; 4 038; 4 040; 4 042 b 9 433; 9 431; 9 429; 9 427; 9 425; 9 423; 9 421; 9 419 c 7 852; 7 861; 7 870; 7 879; 7 888; 7 897; 7 906; 7 915 d 4 891; 4 884; 4 877; 4 870; 4 863; 4 856; 4 849; 4 842 e 6 213; 6 223; 6 233; 6 243; 6 253; 6 263; 6 273; 6 283 f 3 078; 2 978; 2 878; 2 778; 2 678; 2 578; 2 478; 2 378 g 2 402; 3 402; 4 402; 5 402; 6 402; 7 402; 8 402; 9 402


3 Which pattern would you use to count as follows? a count forwards in 10s b count backwards in 20s c count forwards in 9s d count backwards in 8s


4 Write down the number represented by each drawing. ab c


d


e


5 Write down what number X represents in each drawing. a


b c


d Unit 1.1: Whole numbers less than 10 000 9780199043460_OS_Mathematics_5_LB.indb 13 13


TERM 1


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100