This page contains a Flash digital edition of a book.
research  review


Novel gate boosts


breakdown voltage


A multi-recessed gate boosts the breakdown voltage of a SiC MESFET, enabling it to deliver 8.9 W/mm at 2 GHz


CHINESE ENGINEERS have increased the breakdown voltage of a SiC MESFET by switching to a multi-recessed gate with an etch depth of 80 nm.


These efforts by the team from the University of Electronic Science and Technology of China, Chengdu, and The National Key Laboratory of ASIC, Shijiazhuang, will help to raise the profile of SiC MESFETs. These transistors are promising candidates for use in military and commercial communications that require components operating at high frequencies, high powers and high temperatures.


The researchers are developing transistors based on SiC, rather than GaN, because the former is more robust at higher temperatures: “At present, commercial GaN


RF devices struggle to meet the strict reliability requirements for military and commercial applications, especially for applications requiring high temperatures,” says lead-author Xiaochuan Deng.


Templates for Blue and UV LEDs GaN, AlN, AlGaN, InN, InGaN


World leaders in development of Hydride Vapour Phase Epitaxy (HVPE) processes and techniques for the production of novel compound semiconductors


•Templates •Wafer size: 50mm-150mm •Research grade InGaN wafers •Custom design epitaxy •Contract development


•Small and large batch quantities available


Contact us now!


Email: plasma@oxinst.com Technologies and Devices International Tel: +1 301 572 7834


www.oxford-instruments.com/tdi3


In the past, SiC MESFET performance has been held back by trapping issues associated with the surface and the layers under the active channel. “Recently, concern has shifted towards surface traps, due to the introduction of high-purity semi- insulating substrates that have eliminated most of the trapping problems associated with the substrate and the interface between the substrate and p-buffer,” explains Deng.


By turning to a multi-recessed gate, he and his co-workers have directed the current path in the on-state away from the surface, leading to less electron tunnelling and trapping near this region.


MESFETs with a 0.8 µm gate length and a 250 µm gate periphery were made on high- purity semi-insulating substrates produced by Cree. At a drain bias of 65 V the transistors – which featured a 2.5 µm-thick p-buffer with a doping level of 5 x 1015


cm-3


and an n-type, 0.3 µm-thick active layer with a doping level of 2.3 x 1017


cm-3 – delivered


Wide range of materials (GaN, AlN, AlGaN, InN and InGaN) on different sizes and types of substrates (sapphire or SiC)


an output of 33.5 dB, a linear gain of 8 dB, and a power added efficiency of 30 percent. These results were realised when the RF input to the MESFET consisted of 2GHz,50 µs pulses with a 5 percent duty cycle.


The team has recently built a 20 mm gate periphery SiC MESFET. At a drain voltage of 80 V, this produces a saturated output power of 94 W at 3.4 GHz. Deng says that in addition to developing these large periphery MESFETs, the team is focusing on improving the power-added efficiency of its transistors, because many applications demand high power over a wide bandwidth.


X.C. Deng et al. Electron. Lett. 47 517 (2011)


52 www.compoundsemiconductor.net June 2011


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207