This page contains a Flash digital edition of a book.
Winners 2011  CS Industry Awards Most Innovative Device Award


Advanced Gallium Nitride (GaN) research and development


TriQuint received a multi-year Defence Advanced Research Projects Agency (DARPA) research award of $16.2 million to create complex, high dynamic range circuits for future defence and aerospace semiconductor applications. These are some of the most demanding uses for semiconductors in any industry, and a significant technical undertaking.


The intent of this R&D contract was to conduct advanced Gallium Nitride (GaN) research and development, to create new generations of compound semiconductor circuits through the Nitride Electronic NeXt- Generation Technology (NEXT) program. The NEXT program goals are focused on the development of GaN circuits that fundamentally advance design engineering.


These developments could set the stage for revolutionary new designs that are as different as today’s computers are different from those of the 1980s. TriQuint believes that in the future, the leap in technology resulting from NEXT program research will be looked back upon as a significant turning point in the evolution of semiconductor engineering. Gallium Nitride handles more power per square millimetre than gallium arsenide. It is also much more efficient than silicon. However, even when one considers the significant advances TriQuint has pioneered, today’s GaN technology has frequency and power limitations related strictly to its relative maturity compared to GaAs and Si tech. The NEXT program is designed to advance GaN several generations to create high-power / high- efficiency logic circuits. By advancing the GaN technology, greater efficiencies will be


introduced. These include improved ruggedness and the ability to withstand stressful environmental conditions experienced in aerospace and defence applications. It also means significantly expanding capabilities, which makes the product more useful and practical. Success of the TriQuint NEXT program could result in an industry-wide adoption of new technologies with wide reaching economies and improved performance


What is particularly novel is the significance of the aggressive R&D goal the company has set itself. The results of this R&D could be revolutionary. The ability to undertake this level of research comes from a deep understanding of existing GaN technology and the resources needed to improve it. GaN is already recognized for its ability to handle more power per square millimetre than other semiconductor technologies such as gallium arsenide, and much more so than silicon. However, even with the advances TriQuint has pioneered, today’s analogue GaN technology has frequency and power limits. So, the need to re-imagine a conventional process is fundamental to the approach to this R&D program.


Editors Comment: GaN’s great attributes have already revolutionized the LED, laser and RF electronics industries. With the help of TriQuint, the march of this wide bandgap wonder material is set to continue, making an impact in the production of logic circuits.


June 2011 www.compoundsemiconductor.net 33


WINNER


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207