This page contains a Flash digital edition of a book.
industry  LED manufacturing


the growth conditions for the last few layers of the epistructures so that they form a rough surface (Figure 1 i). The downside of this approach is that it can compromise electronic and optical performance, and we believe that it is better to insert a crystalline scattering layer inside the p-type GaN layer (Figure 1 h). Take this route and a flat surface can be formed on the top of the chip, simplifying subsequent processing steps.


Gains are also possible by tailoring the transparent contact material by chemical treatments to create scattering objects on the contact surface (see Figure 2 c and d). In addition, it is possible to use a similar technology with chips employing a flip-chip geometry, with light extracted from the sapphire side of the device. In this case, scattering objects are formed on the sapphire surface (see Figure 2 e and f).


Figure 1. A basic InGaN-based LED chip can include many features for improving light extraction: a)bottom mirror, b) scribing area, c) ultra low dislocation density GaN buffer, d) light scattering epitaxial layer, e) chi sidewalls, g) metal contacts, h) internal light scattering p-layer, i) contact material and j) chip coating


acquired with a scanning electron microscope reveal that it is possible to control the size and shape of these features by judicious choice of the growth regime (see Figure 2 a and b). The shape of these voids can be controlled from nearly vertical to fully inclined. Thanks to this versatility, it is possible to produce an optimised dispersion structure with excellent crystal quality through careful selection of growth modes and the thickness and composition of the layers.


Extracting light through the top Internal reflection at the chip’s top surface, which reduces LED output, can be cut with either antireflective optical coatings (see Figure 1 j) or objects that are highly dispersive. According to theory, objects are most effective at dispersing light when the ratio of the wavelength of this radiation inside the material is between one-tenth and twice its physical dimension. Dispersion efficiency peaks when this ratio is between one-third and one.


Increasing dispersion by tailoring the chip’s surface is a widely adopted approach for boosting light extraction. There are numerous highly sophisticated, very robust methods that can be adopted, but traditional photo-resist technologies are far from ideal because it is challenging to scale this approach to dimensions comparable to the very short emission wavelengths of GaN-based materials.


Quite often mask-less approaches are more suitable, from both a cost and yield perspective. A well-known, very efficient method for increasing dispersion involves altering


48 www.compoundsemiconductor.net June 2011


Traditional scribing technology for chip separation tends to create visible damage on our substrates and their epilayers near the scribing area. Low damage scribing techniques combined with post scribing chemical treatment is an effective way to solve this problem.


Although the sidewalls of the chip account for a very small proportion of its surface area, they play a pivotal role in determining the LED’s extraction efficiency. That’s because emission from the active region transgresses equally in all directions, and due to the high degree of total internal reflection within the device, a significant portion of this light is guided towards the sidewalls. We have found that extraction efficiency can be improved with various etching methods that either taper the sidewalls


Figure 2. Scanning electron microscopy images reveal: the microstructures to reduce tension in GaN layer (a, b); the tailoring of transparent contact materials to increase light extraction (c,d); and the structuring of the sapphire surface for flip-chip technologies (e,f)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207