This page contains a Flash digital edition of a book.
industry  SiC transistors


BJT is free from this. Our npn SiC bipolar transistors are normally off devices that deliver lower conduction losses than any other SiC technology. The saturation voltage knee that plagues the IGBT does not impair them, so their gain in efficiency at partial load currents is even higher.


Figure 2. Turn on (to the left) and turn off (to the right) waveforms for the SiC BJT. The green signal is the control signal, the yellow is the collector current, and the magenta is the collector-emitter voltage of the BJT. The turn on is very fast, with a total switch time of approximately 60 ns and the turn off is even faster, with a total time of approximately 30 ns


What’s more, they combine the best properties from the unipolar and bipolar silicon world and then enhance them even further. The bipolar behaviour contributes low conduction losses and good utilisation of the relatively costly SiC material, yet at the same time the switching performance is very fast. IGBTs are optimised and balanced towards either low conduction losses or low switching losses – with the SiC BJTs there is no need to compromise.


BJTs are also easy to deploy in parallel thanks to the positive temperature coefficient of the collector-emitter saturation voltage, Vcesat


. With SiC BJTs, higher


temperature leads to a higher saturation voltage, but this leads to favourable balancing of the total current between the transistors. And in addition, it helps to prevent hotspots within each die.


Figure 3. The energies produced in the switch required to turn on and turn off events of the SiC BJT in black compared to the silicon IGBT in red. The figure also shows that the temperature dependence of the switching losses is very low for the SiC BJT


In this process, the voltage and current are constantly chopped by the switching frequency. In the PV inverter case, their waveforms are smoothed out by filter inductances.


Consequently, any comparison of the performance of inverters employing SiC transistors and those using silicon equivalents must include conduction losses and also losses caused by switching events. During turn on or off, every semiconductor device simultaneously carries current and voltage, which produces losses. Minimising loss requires a reduction in the rise and fall times of current and voltage.


In the case of the most widely used silicon technology for switching applications, the insulated gate bipolar transistor (IGBT), a tail of current is conducted after the transistor has been turned off, increasing losses. The SiC


22 www.compoundsemiconductor.net June 2011


Figure 4. The schematic of the simulated 8 kW boost stage, with 400 V input voltage and 800 V output voltage. Both a SiC approach with the BJT and a silicon approach with an IGBT were simulated


We have compared the forward characteristics of our 50 A SiC bipolar transistor with a silicon IGBT, a high- speed 40 A device that contains a silicon IGBT and anti- parallel diode (see Figure 1). Plotting the performance of both devices reveals that the saturation voltage of the SiC BJT is significantly lower – approximately 40 percent less at 40 A compared to the IGBT. This gain in performance gets larger and larger as collector current decreases, and at 15 A it is 70 percent at 25 °C and 75 percent at 150 °C. The superiority of the SiC BJT stems from a


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207