This page contains a Flash digital edition of a book.
medical materials


such as the Variable Impedance Prosthetic socket (VIPr) for Transtibial Amputees. VIPr is being developed to achieve lower interface peak pressures over bony protuberances and include 3D-printed elements made from rubber-like PolyJet Polymers, Vero White Plus and Tango Black Plus. MRI tech- nology and Finite Element Method are also used to under- stand the compliance levels of the device.


Novel Devices


Potential O&P devices are not limited to AFOs or prosthet- ic sockets. Exoskeletons, fairings, and medical casts along with others are also being considered: Medical exoskeletons promise a great future even though


they are not as impressive as Iron Man’s exo-suit. Body-pow- ered or electrically actuated exoskeletons designed to assist humans with neuromuscular diseases is another potential application for 3D printing.


Photos courtesy Bespoke Innovations A 3D-printed OXPEKK-IG polymer cranial bone implant.


Bespoke Fairings surround an existing prosthetic leg with the exterior contours of the owner’s healthy leg.


Bespoke Fairings are customized coverings that surround an existing prosthetic leg to give the impression of an original leg. They are created from a 3D scan to capture contours of the exterior of an existent leg and used mainly to boost the morale of the prosthetic user. Osteoid medical cast: Deniz Karasahin, an industrial designer, developed the Osteoid, a functional medical cast


attachable as a bone stimulator. This 3D-printed cast has the ability to deliver low-intensity pulsed ultrasound (LIPUS) which can reportedly reduce the healing process time for the bone by up to 38%. Non-union fractures showing no sign of healing after three to six months have also been healed up to 80% by using this device. A 3D scan of the patient is modi- fi ed using the modeling software. The modifi ed CAD geom- etry is then employed in 3D printing with the FDM Process in making the Acrylonitrile Butadiene Styrene (ABS) cast. The software is used to design a locking mechanism and then generate the holes with an algorithm. The cast is made from two pieces assembled together like a jigsaw puzzle with a central hole passing through the edges of the pieces where a fl exible pin is inserted to fi rmly connect them together. Another trend is to incorporate sensors to these 3D-print- ed O&P devices. Mavroidis and his colleagues have been working on fabricating smart orthoses containing sensors printed along with them. These sensors are expected to determine the structural state of the device or keep track of the patient’s gait.


Materials and Processes Material selection in 3D printing has been improving


greatly due to heavy industrial focus, and with some help from the Rep-Rap movement. Many different composites are being developed. Robert Morris University (RMU) is active in this regard, with its work in Fused Deposition Modeling (FDM) and Stereolithography (SLA) processes. Ease of recycling is another advantage for material development where an RMU


70 — Medical Manufacturing 2015


Photo courtesy Oxford Performance Materials


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232