This page contains a Flash digital edition of a book.
The Hertzian indentation technique (a measure of surface stresses on ceramics) was used to characterize the response to spherical indenter contact, and scanning electron mi- croscopy compared the degree of edge chipping with and without vibration. Edge chipping was signifi cantly reduced under ultrasonic vibration, suggesting improved performance, life and surface quality of bioceramics in particular and brittle materials in general (ICMP 2014 paper #4977). Bioactive ceramics (hydroxyapatite, bioactive glasses, glass-ceramics) have high biocompatibility and are used for bone implants and fi llers. HA (hydroxyapatite), an essential component in bones and teeth, has the ability to build more bone (apatite layer formation) through the interaction of the HA surface and ions within the body. The effect on HA bioactivity by irradiation with calcium or magnesium ions at different doses and depths in a simulated body fl uid was studied at Tokyo Metropolitan University (Japan). Calcium ion irradiation was found more effective in building acicular (needle-like) apatite formation, the rate of growth increasing with ion dose and depth (ICMP 2014-#4936). Among other recent papers, authors from the University


of Notre Dame (Notre Dame, IN) and Sites LLC (Fort Wayne, IN) presented a framework for manufacturing metals with the microstructure of bone (http://tinyurl.com/tp09pub43), and Saint Louis University (St. Louis, MO), Kansas State Univer- sity (Manhattan, KS) and Ningxia University (Yinchuan, China) researchers assessed the machinability of nanocrystalline hydroxyapatite bioceramic (http://tinyurl.com/JMP-ductile; http://tinyurl.com/JMP-bioceramic).


Soft Materials A continuing challenge to biofabrication of functional thick


SME’s North American Manufacturing Research Conference (NAMRC) and the American Society of Mechanical Engineers’ Manufacturing Science and Engineering Conference (MSEC) are hosted June 8–12, 2015, at the University of North Carolina- Charlotte, with several hundred papers to be presented across the scope of manufacturing, with expected tracks on biomanufacturing and additive manufacturing. For more information on NAMRC 2015, go to www.sme.org/namrc.


For information on obtaining NAMRC, MSEC and ICM&P papers, contact publications@sme.org. SME Technical Papers (coded as TP…PUB…) and search options for the 16,000-document collection are available at http://tinyurl.com/SearchTPs.


tissues is the development of an effi cient artifi cial vascular (blood vessel) system. Extruded alginate vascular conduits lack the necessary mechanical properties of natural biomate- rial, leading researchers at the University of Iowa (Iowa City) to explore reinforcement with multiwall carbon nanotubes (MWCNT). Tests of mechanical, dehydration, swelling and degradation effects showed encouraging performance, with future work planned for enhancing mechanical properties (NAMRC 2014-#4435).


Other NAMRC papers have focused on improved tissue cutting in needle biopsies through needle-tip design (http:// tinyurl.com/tp09pub27; http://tinyurl.com/tp10pub82), vibration cutting (NAMRC 2013-#1566) and friction reduc- tion (NAMRC 2013-#1568). A haptic position measurement system was developed to track a guidewire during suturing of soft and/or compliant objects (NAMRC 2013-#1569), and fabrication techniques for tissue scaffolds were explored (http://tinyurl.com/tp11pub33; http://tinyurl.com/tp12pub39). A hybrid hierarchical 3D scaffold approach was also pub- lished in SME’s Journal of Manufacturing Processes (http:// tinyurl.com/JMP-scaffold). Another paper (http://tinyurl.com/ tp01pub314) considered the role of fi ber architecture in bio- composites for synthetic tissue replacement.


Specialty Uses S-T. Hsu and Y.L. Yao of Columbia University (New York) investigate drug delivery in polylactic acid (PLA)/poly-L-lac- tide acid (PLLA), a widely used bioplastic derived from such sources as corn starch, tapioca roots or starch or sugarcane. PLA also is used as medical implants (pins, screws, mesh) as it provides support as it gradually degrades into lactic acid (the substance made by the body during exercise). Propri- etary formulas of PLLA are popularly used to treat facial fat loss (yes, facelifts).


The month-long degradation rate of PLA is advantageous for delivery of long-term drug treatments. Depending on the concentration, however, the drug molecules themselves can accelerate the degradation and release rate as they diffuse into the matrix. Hsu and Yao are using laser melting to reduce PLLA surface crystallinity at the layer below the matrix sur- face, shortening the initial induction rate while maintaining the desired overall drug release rate (NAMRC 2014-#4411). As any creator of a Halloween haunted house can at- test, mimicking the feel of a human eye isn’t an easy trick. In the ophthalmological fi eld, common plastic and rubber eye models don’t accurately simulate the softness and high water content (80%) of a real eyeball. For surgical simula-


19 — Medical Manufacturing 2015


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232