This page contains a Flash digital edition of a book.
Automation


The traditional approach has been to build very light, open-truss-designed gantry robots, he added. “You’ve got two X tracks in parallel, then the beam that goes across them is an open truss, like the truss you’d fi nd in a steel building,”


he said. “From that design standpoint, the way you get speed and performance is to keep taking weight out—you want as light a weight as possible. We think we’ve got a better alterna- tive for the increased demands for higher throughput in the packing area.”


Reduced Harmonics - Enhanced Tool Performance Tool Holder Rigidity - Increased Profits


A Must For All Dual Contact Applications


Güdel takes a different design ap- proach, he said. “We built our gantry mechanisms with welded box-beam construction and steel tube, not an aluminum truss. Our philosophy is to build the mechanism as stiff as possible, with a rack-and-pinion drive instead of the belt drive, and take that stiff mecha- nism and push a tremendous amount of power into it through the motors and the gearboxes—that’s how we get speed.”


Do Your Tool Holders Fit Your Spindle?


Non Deformed Tool Holder


Tool Holder fit is critical to all milling applications. Just because a toolholder is engaged with the spindle does not mean it is making full taper contact. When the toolholder is not properly seated with the spindle, the toolholder is susceptible to variable cutting force variations, misalignment, and harmonics.


Expanded Tool Holder


When a retention knob is installed into the toolholder the small end of the toolholder taper can become expanded.


The High Torque Retention Knob is the only retention knob designed to prevent toolholder expansion. With High Torque Retention Knobs you can expect:


Increase In Tool Life Better Finishes


Reduced Harmonics Increase In Rigidity


Improved Tool Holder & Spindle Life 1.800.322.7750


www.jmperformanceproducts.com Fairport Harbor, OH


PRODUCTS, INC. discover innovate solve


When the taper is expanded it makes contact with the spindle before becoming fully engaged with the spindle. This creates a gap at the gage line and allows the toolholder to move during engagement. Toolholder expansion also effects the position of the cutting tool.


The deformation of the taper is in the elastic zone of the material and cannot be seen by the eye, but can be checked using a taper inspection gage.


“The robot guys want the best ratio of usable work envelope to footprint—the smallest dead space around the base of the robot, and the biggest work envelope.”


The new generation of Trackmotion adds improved performance and reli- ability. The frame is now a closed, gus- seted weldment that delivers increased stiffness with a smaller footprint. The enclosed frame design also prevents debris buildup in the center of the track. The track’s improved stiffness means less defl ection over the travel length, with repeatability of ±0.02 mm, the ability to operate at higher speeds and accelera- tion of up to 180 m/min, while requiring less fl oor space.


“The previous generation was kind of brute force, they would lay down two C channels and weld a bunch of cross beams, like railroad ties, across them,” Campbell said. “You still see people offering this, which is big and heavy. If


74 ManufacturingEngineeringMedia.com | June 2014


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200