This page contains a Flash digital edition of a book.
Energy Innovations


Chilling Out in the Best Way Possible


While energy manufacturing is most oſten thought of as making things that produce energy, in some cases the term applies to manufacturing objects which manage energy. Tis case study deals with one such instance. Manufacturers of aluminum extrusions are highly dependent on the availability of


high-quality billet, which can sometimes be difficult to procure either in cut lengths or logs. Without billet, extrusions do not get run and on-time deliveries do not occur, particularly with custom products. Tis situation can put customers at risk. For that reason, Sierra Aluminum Co. (Riverside, CA), a full-service manu-


facturer of standard and custom aluminum extrusions, has its own billet casting foundry that features the Wagstaff Billet Casting System. Te company serves many industries, including the energy industry, by providing extrusions that end up in racking and accessories to the solar energy industry. Sierra’s billet casting operation sup-


plies its extrusion manufacturing facili- ties in Riverside and Fontana, CA, with premier-quality aluminum billet “logs” that are then extruded into standard or custom shapes and lengths, and put through finishing processes such as machining, thermal treating, anodizing and painting. Te billet logs Sierra manufactures—


the material from which extrusions are produced—are 21' (6.4-m) long, and 7, 8, or 9" (178, 203, or 229 mm) in diameter. Using the Wagstaff system, billets are created from pouring molten aluminum through tooling of specific dimensional characteristics. As the process continues, logs are formed to the length and diam- eter desired by the manufacturer. “At the tooling, these logs have a shal-


low molten metal core and a solid exterior,” said Shayne Seever, vice presi- dent of administration at Sierra. “Tey are cooled in a direct-chill process by water that is sprayed on the solid metal skin as it continuously exits the Wagstaff molding system.” Seever explained that the direct-chill process is a continuous loop that includes


no heat exchangers. Aſter it leaves the spray system, water is recooled solely by means of a cooling tower. Te only coolant involved is normal tap water with a small amount of corrosion inhibitor added plus a minor pH adjustment. “Te cooling tower is a key component, and it is subjected to water that is used


74 Energy Manufacturing 2014


Aluminum manufacturer adds longevity to its billet-casting chilling system with HDPE cooling tower technology.


With direct-drive motors such as those used in this Delta cooling tower there are no belts or gear reducers, internal gearbox or bearings to maintain.


Photos courtesy Delta Cooling Towers


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200