in mass production: In Hollywood terms, we expect a scene with a lab-coated scientist holding a smoky beaker and shout- ing “Eureka!” and a quick jump to footage of an assembly line or conveyor belt, if not straight to scenes of happy consumers. Manufacturers know better, of course. At GE Aviation, this is where the ‘microfactory’ and Jeff Wessels come in. “Our Global Research Center in Niskayuna, NY started
developing this technology in the early to mid-1990s. Tey for- mulated the basic process and designed and made the neces- sary equipment. Around the early-2000s timeframe, that process was transitioned to our Newark, DE, microfactory site, where I’m at right now.” In 2006, Wessels, who has
been with GE for 28 years, was tapped to start up GE’s first microfactory, which was devoted to high-pressure turbine air foils. Tere, he worked on ways to provide lean practices to improve the manufacturing processes, he says, resulting in a significant amount of cost reduction. “Two years ago, because of
the microfactory experience and my materials background I was selected for this role,” namely plant leader, Ceramic Composite Products at the Newark site. Te goal there is what he calls “industrialization— learning to scale up the process, to understand the variation associated with all of its different steps, reduce that variation, and work to make the program economically feasible.” Tis is where plans for some would-be miracle products fall
The turbine shroud, in a container, is placed in an autoclave at GE Aviation’s Newark, DE, microfactory.
But scaling up is not enough: they have been seeking ways
apart: It’s one thing to develop a material with the properties you desire, but another to be able to do so in a way that works in a business plan. Wessels and the Newark microfactory team have had to learn to efficiently process enough material to make it economically feasible: Where the Global Research Center made an initial coating reactor that would coat 11 strands of tow in one coating process, for example, the Newark facility has expanded that capability to 24 strands of tow, and plan to expand to 72 strands of tow—necessary, he says if they are to be able to keep up with expected production demands. “We’re scaling up each step of the process,” Wessels ex-
plained: “First it’s the fiber-coating, next is the tape-making process. Whereas at the GRC they had a small drum winder, we have a drum winder that’s ten times that size. And in the future we’ll be going to a continuous tape-making process, which gets us into more of what the PMC industry is doing now.
to also improve the processes. “One we’re looking at right now is automation of portions of the layup,” Wessels said. “Te layup is a very manually intensive process at this point. It’s manually placing layer over layer, getting each to fit in the right direction. We use orientation markers and everything to assure the plies get in the right place, in the right order. But hand layup leaves room for inconsistencies and, more important to us, it’s a repetitive process, and people who do it are subject to ergonomic injury. Tat’s something we’re very cognizant of, and so we’re taking steps to automate certain parts of the process—the parts that are the primary causes of fatigue in the workers’ hands.” At GE, the microfactory, then, is what comes between the
‘eureka!’ moment and full production: “At the microfactory stage, we explore all of the limits, we discover the parameters outside of which our parts become bad. We need to under- stand them, and narrow their range,” Wessels said, “so at Asheville, in that high-volume facility, they won’t have to vary it: they’ll know from our work here what the space is that they can operate in. Tat’s a great concept that we’ve really driven in GE Aviation, and it's one that we’re really proud of.” ✈
Aerospace & Defense Manufacturing 2014 141
“On the layup portion too: at the Global Research Center,
they were using scissors and knives to cut and shape their plies. Here, we’re using a standard Gerber Technology cutter of the type used throughout the PMC industry and now in the CMC industry for the rapid cutting of these plies,” he noted. “Te burn-out process has scaled up significantly; the melt-
infiltration process has scaled up significantly—all of those major processes have to be scaled up,” he said.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255 |
Page 256 |
Page 257 |
Page 258 |
Page 259 |
Page 260 |
Page 261 |
Page 262 |
Page 263 |
Page 264 |
Page 265 |
Page 266 |
Page 267 |
Page 268 |
Page 269 |
Page 270 |
Page 271 |
Page 272 |
Page 273 |
Page 274 |
Page 275 |
Page 276 |
Page 277 |
Page 278 |
Page 279 |
Page 280 |
Page 281 |
Page 282 |
Page 283 |
Page 284 |
Page 285 |
Page 286 |
Page 287 |
Page 288 |
Page 289 |
Page 290 |
Page 291 |
Page 292 |
Page 293 |
Page 294 |
Page 295 |
Page 296 |
Page 297 |
Page 298 |
Page 299 |
Page 300 |
Page 301 |
Page 302 |
Page 303 |
Page 304 |
Page 305 |
Page 306 |
Page 307 |
Page 308 |
Page 309 |
Page 310 |
Page 311 |
Page 312