This page contains a Flash digital edition of a book.
feed operations must handle such forces and stresses, and part fixturing as well must be designed to resist these high forces, too. Horsepower well beyond that of a standard grinding


machine is required for creep-feed grinding to generate and maintain the high-productivity forces needed to remove large amounts of material quickly. While a typical reciprocating grinder generates 20–50 hp (14.9–37.3 kW), a common creep- feed grinding machine ranges from 60–150 hp (44.7–112 kW) and more. One benchmark dictates 20 hp for every cubic inch of material removed per minute, per inch of wheel width. Ideal creep-feed grinding machines also sport direct-drive


spindles that eliminate variables such as slipping belts. Te drive system for their diamond roll dressers must also possess the capability to generate and withstand high levels of torque. A servomotor drives the dressing roll into the grinding wheel to reform it, but the dressing wheel needs to hold its speed and not impart accelerative forces to the grinding wheel itself. Creep-feed grinding requires that the workpiece be fed


slowly and precisely under the wheel—in general, the greater the depth of cut, the slower the table speed. Feed control is crucial to maintain part precision and also because any sud- den change in table feed can break a grinding wheel that is under heavy grinding forces, which is oſten the case in the creep-feed process.


in power usage occurs with in-process continuous-dressing, the machine initiates wheel dressing, and when consumption returns to normal, the dressing cycle stops. In the long run, such a strategy can optimize use of abrasives and save time by reducing the frequency of shutdowns for wheel changes.


Wheel Structure In light of renewed interest in creep-feed grinding, wheel


vendors have developed wheels that minimize wheel con- sumption in the continuous-dress creep-feed process. Grind- ing wheels engineered for creep-feed grinding applications feature open bond, “induced pore” structures. When the wheel is buried deep in the cut, the pores


provide a path for coolant, swarf and excess wheel material to escape the grinding zone. Aluminum oxide, for instance, is the most common abrasive material used in grinding wheels. New wheels designated as ceramics (actually premium-level alumi- num oxide) can grind up to three times faster than conven- tional abrasives, according to wheel makers, while the ceramic wheels’ durability enables them to process as many as three times as many parts per wheel. Te new wheels’ durability and productivity offset their required higher initial investment, wheelmakers say. Wheel durability as well as grinding results themselves are dependent on the proper application of coolant in creep-


Creep-feed grinding requires that the workpiece be fed slowly and precisely under the wheel—in general, the greater the depth of cut, the slower the table speed.


Variable-speed ballscrews, racks and pinions or electro-


mechanical table drives will maintain tight control over table speed and position. Tey provide this control minus any surg- ing that might occur with table speeds as slow as 0.5 ipm (12.7 mm/min), although more common speeds are in the range of 8–30 ipm (203–762 mm/min). Hydrostatic or linear-bearing ways then provide preload to eliminate slack and absorb vibra- tion for maximized grinding precision. A variation on the continuous-dress creep-feed process,


called in-process continuous-dress, can help control manufac- turing costs where possible. With the in-process strategy, the continuous-dressing operation is, in fact, not continuous, but switched on and off according to need. Based on the workpiece material, amount of stock being


removed, wheel configuration, and other factors, continuous- dressing on a long cut may result in grinding wheel overdress- ing. And while part dimensions remain unaffected, valuable wheel material is wasted. During the in-process dressing mode, the machine moni-


tors its power consumption and detects any increases or surg- es, which would indicate a dull grinding wheel. When a rise


feed grinding. Coolant prevents buildup of heat in the part and grinding wheel, and also removes swarf from the wheel contact zone to prevent marring of the workpiece. Sufficient coolant flow also prevents the pores of the grinding wheel from becoming filled with swarf, a condition that reduces the wheel’s cutting effectiveness and further reduces the coolant’s temperature-control benefit. When temperatures rise too high, the wheel may burn the workpiece and swarf may weld to the wheel, negatively affecting workpiece dimensions and finishes. Creep-feed grinding, and in many cases its continuous-


dress version, provide a variety of benefits when process- ing the growing selection of high-performance workpiece materials. Accuracy and repeatability are a given. Te speed of creep-feed grinding boosts productivity, and the elimination of many pre-grinding and post-process operations as well as part handling can significantly reduce overall part production times. Successful application of creep-feed grinding requires investment in appropriate equipment including specialized grinding machines and grinding wheels, but for the right situ- ations and materials, return on the investment will far exceed a creeping pace. ✈


Aerospace & Defense Manufacturing 2014 109


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312