This page contains a Flash digital edition of a book.
these parts, can’t recut, can’t fix. It just is or it isn’t in toler- ance. In this landscape, it’s easy to justify the cost of a more expensive, but more precise insert that’s far less liable to land an operator in hot water. Many boring tool manufacturers only offer metric scale


tools, which have a conversion (or have been converted on the outside). In reality, that tool is still adjusting to a metric pitch. Tis means conversion errors can accumulate quite rapidly. Other manufacturers, Kaiser included, have always


produced metric tools for the metric market, and inch tools for the inch market. Any of these inch-graduated tools are produced all the way through, from inception to finished product, to inch specs. For decades, forces in the United States have tried to move toward metric standards. But the aerospace legacy on producing and manufacturing com- ponents is so strict, and so difficult to change, that it has been a major force in keeping us on the inch system and our refusal to move away from it. Aerospace OEMs demand their components are made with tools and gages that the operators used based on inch calibrations. Tey don’t want tools that have been converted from metric, and are thereby “close enough.” And “close enough” might as well be a four-letter phrase in


aerospace. Some aerospace manufacturers won’t even allow a tier one or two supplier to upgrade or change a system due to obsolescence. For example, once a part has anchored itself in an aerospace component’s specs, process plan sheets, and it is officially dictated that the process is done with a specific part number, an operator will have to use that exact tool combina- tion for the life of the part. Last month, BIG Kaiser sold two boring heads which were


of a design that was relegated obsolete in 1998. It can be pain- ful, but a company had better be prepared to offer even obso- leted tooling for years to come. Otherwise, the component has to be recertified, validated, etc. and the cost of that is massive, even compared to resurrecting obsolete tools.


Repeatability and Adaptability Some aerospace components can be on a single ma-


chine for weeks at a time, so once an operator gets the tools cutting the size that it needs to be cutting, he will want to be able to hold and maintain that diameter and accuracy, literally, for months. Consider a transmission/gearbox project BIG Kaiser


worked on with an aerospace manufacturer a few years ago; operators set tools on the initial run, and ran for a year (18 months in the case of a few of the tools) without having to make an adjustment. They neither adjusted the diameter nor changed the insert, making up to 100 parts without changing anything about the tool. The confidence in that tool was close to 100%. Big aerospace OEMs want a tool to hold that for the lifespan of the machine, and of the


To avoid chatter and achieve an acceptable surface finish when creating a tapered shoulder between two holes, every component in the system must be up to the task.


workpiece. Anytime you introduce a variable, like an opera- tor adjusting things, that’s potential for an error, and then scrap. Manufacturers need tools to hold size absolutely the same for years; producing the same bore, meeting the same requirements. That’s not always realistic, and failures do happen. But confidence in repeatability is earned over time, and goes a long way. Aerospace manufacturers are oſten asked to machine in-


tricate workpieces, and it is not always possible to complete a bore with a standard boring tool. Sometimes, that manifests it- self as a hub at the bottom of a hole, like an OD hub. Consider producing a bore that goes all the way down, reaching over a hub with little space between it and the bore, working with a large radius, or trying to turn an OD, all the while having to fit over a large mounting bracket. It’s important to have a fairly adaptable system in these


cases, and to have a strong program of tooling as standard, or at least semistandard. Most boring companies do just fine at or below 3:1 length-to-diameter ratios, but Kaiser offers a standard range up to 10:1. And it goes without saying that standard is always preferred.


It Takes Time to Fly Becoming a player in aerospace manufacturing doesn’t


happen overnight. It takes decades to become a globally- known supplier, and that’s true of everyone involved; from OEMs, to tier one suppliers, to job shops, to the cutting tool manufacturers and machine tool builders that supply each step along the way. Even if you have the best products in the world, it takes years to learn and understand the unique way the aerospace industry operates. It’s always evolving, so to stay relevant, suppliers have to be constantly evolving with the times. For Kaiser, the recent digital boring heads are currently gaining momentum from aerospace manufacturers, because they eliminate an operator variable. And the more variables that can be removed, the more repeatable and precise the components will be—and in aerospace manufacturing, that’s really the Holy Grail. ✈


Aerospace & Defense Manufacturing 2014 125


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312