This page contains a Flash digital edition of a book.
Aerospace Expertise


technology, according to many industry experts, has reached a developmental limit. As a result, both increases in productiv- ity and structural weight saving will be minimal. Fiber laser welding of joints has a speed advantage over the


riveting process. Average laser welding speeds are 6–8 m/min, depending on the laser power, compared to 200–400 mm/min for riveting. While joining parts on a fuselage shell can take five hours using current riveting processes, laser welding can join the same components in just thirty minutes. Laser weld- ing is readily applied to a wide range of joint designs, includ- ing those requiring simultaneous welding of two sections of a joint such as T-joints and butt joints.


Power Savings Another reason fiber laser beam welding is replacing CO2


Fiber laser welding aerospace components provides very high strength mating components at high production speed and with consistent quality.


Many of these alloys currently are welded using tungsten inert gas (TIG) and electron beam (EB), in addition to laser welding. Tese alloys pose several welding challenges from heat-affected zone cracking to porosity formation in the weld fusion zone. Laser welding using high-power fiber laser has been shown through extensive testing to eliminate cracking and porosity formation. Fiber laser welding has been demonstrated to join Inconel


718 components in exhaust frame subassemblies in aero- engine hot sections. Reduced cracking and porosity formation using fiber laser welding is a result of the lower heat input and distortion compared to arc welding methods. For joint penetration up to 8 mm, laser welding has an


added advantage over electron beam welding. Fiber laser welding occurs at atmospheric pressure with inert gas shield- ing to protect the metal in the weld pool and the heat affected zone from contamination during the welding process. By comparison, electron beam welding occurs in a vacuum with the associated cost and complexity. Fiber laser welding has the advantage of being flexible. Set-


up changes for different parts are easier and can be performed more quickly than for arc and electron beam welding. Also, a fiber laser system oſten can be used for cutting and/or drilling, frequently for the same part in the same setup.


Alternative to Mechanical Joining Riveting is a standard mechanical joining process in aero-


space manufacturing. Approximately one million rivets are used to join components in a typical aircraſt fuselage. Te riv- eting rate for components 10.5 × 3.5 × 1.75 m is 4.4 rivets per minute using the most advanced, automated technology. Tis


128 Aerospace & Defense Manufacturing 2014


and Nd:YAG lasers is that the quality of the fiber laser beam means that it can be focused to give higher power density than from other types of lasers. Tis reduces power require- ments and costs. Te laser beam can be focused to submil- limeter diameters, which in combination with multikilowatt laser beams, produces power densities in the range 103–107 W/cm2


at the workpiece. Te high power densities produce a


“keyhole” weld with low heat input and fast welding speeds. Tis leads to higher aspect (high depth to width) ratio welds in many metals and alloys such as stainless steels, nickel, tita- nium, and aluminum-based alloys. Fiber lasers also offer the potential to reduce manufac-


turing costs through reduced operating costs. With its 1µm wavelength, the fiber laser has an absorption rate in metals at room temperature that is seven times higher than for the 10.6 µm wavelength of a CO2


laser which contributes to higher


welding speeds. Fiber laser also has a distinct advantage over other laser


sources in terms of operating cost. Te reduced operating cost of fiber laser is also due to the high energy efficiency of the pump source and of extraction from the gain medium that leads to a wall plug efficiency for the fiber laser that is typically around 25–30%, compared to less than 12% for a CO2


laser. Te higher efficiency leads to lower electrical energy consumption, the major cost factor in any high power laser system. Te higher efficiency also contributes to a more compact laser head. Compared to other solid state lasers, fewer mechanical components are needed in the laser con- struction. Recent trends indicate that as pump laser diode prices continue to decrease with increasing manufacturing volumes, fiber laser system prices will continue to decrease as well.


Welding Capability of Common Aerospace Materials Commercial aircraſt are getting larger (850 seats) and


laser and a few percent for a flashlamp pumped Nd:YAG


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312