This page contains a Flash digital edition of a book.
Technology in Action Adopting multitasking machine technology has enabled


Hartzell to reduce the number of machines needed in a cell, increase output per cell operator, complete parts in single simple setups, improve part accuracy and slash overall part cycle times. In fact, Barhorst said that, on average, one Mazak multitasking machine allows his individual operators to each pump-out the work equivalent to that of four or five conven- tional machines.


disrupting production operations at the main plant. Te test facility also provides an ideal place for the machinist who will run the new system to actually train on it. “Once the produc- tion line is up, both the machinist and the new machine are instantly productive,” Carter said. Recently, Hartzell tested three advanced Mazak machine


tools for incorporating into high-performance cells at the propeller manufacturing facility. Tose machines were a Mazak Integrex e-420H-S full five-axis multitasking machine, the Integrex i-200ST multitasking machine, and a Quick Turn Nexus 400-II turning center. On both Integrex machines, Hartzell opted for Capto C6


spindle interfaces as well as expanded tool capacities—80 on the Integrex-420 and 110 (split magazines with 55 each) for the Integrex i-200ST. The reason for these larger tool magazines is that the shop wants to set up tools and forget them. “We don’t want our machinists wasting time having to pull tools in and out of a machine,” Carter said. “Some- times the tooling is redundant, but in most instances, it’s all different and pre-staged to handle families of parts within a cell.” One key family of parts that will benefit from Mazak’s


advanced machine tool technology is the blades for propel- ler assemblies. Hartzell estimates that the Integrex e-420H-S equipped with advanced programming soſtware, special tool- ing and custom fixturing will slash machining cycle times by as much as 50%. Te shop produces over 500 different part number blades


from a basic group of six different sized large-envelope forg- ings. Te largest size aircraſt blade measures 5' (1.5-m) long and a special wind tunnel blade is 7' (2.1-m) long. Blades receive some rough machining on the ODs and IDs of their shanks—the interface to the hub of the propeller assembly. Ten the airfoil contours get machined. Depending on size, complete machining time can range from 15 minutes up to an hour (for larger sizes). In machining operations, blades rotate around via the machine’s synchronized C-axis motion. Balance among each blade of a propeller assembly is


Hartzell Propeller relies on advanced machining technology from Mazak to produce it world-class propeller assemblies.


When adding a new piece of equipment to one of its


cells, Hartzell first proves out the machine at the company’s production simulation facility. Machinists determine the best part fixtures, setups and tooling to use. Ten, they conduct production test runs of the actual part/parts the machine will be making to fine-tune the sequence of machining operations and achieve the shortest cycle times possible. Off-line testing, said Justin Carter, CNC programmer and


process development manager at Hartzell, allows the shop to “work out all the bugs” of a new machining process without


70 Aerospace & Defense Manufacturing 2014


extremely critical, which is why Hartzell manufactures blades in sets. So for three-blade assemblies, for example, the shop would make the blades in groups of 3, 6, 9 and 12. For track- ing purposes, blades are serialized. “Even though our manufacturing processes are extremely


repeatable, there are several stages in blade set manufacturing when we will check balance,” said Barhorst. “And when they are complete, we subject them to a digital balancing operation, then again when they are together as a complete propeller assembly.” However, Barhorst said that with the highly accurate


Mazak machine tool technology, the shop eliminates the necessity of machining serialized sets all at one time. Instead for instance, it gains the production flexibility to switch from machining blades for a three-blade propeller assembly to


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312