This page contains a Flash digital edition of a book.
flying greater distance (15,000 km). As a result, aerospace manufacturers are aggressively investigating new approaches to aircraſt design, materials and manufacturing methods. Key drivers are reducing the weight of an aircraſt in order to reduce fuel-consumption. Tis results in a higher payload capacity for commercial aircraſt and better agility for military aircraſt. In terms of productivity, the focus is on the cost of manufacture where fiber laser has the advantage. Te reduc- tion in manufacturing cost significantly impacts the final manufacturing cost of the aircraſt as well as the operation cost. To date, nearly 70% of today’s commercial aircraſt struc-


tures are of aluminum alloys followed by titanium and nickel- based alloys due to excellent strength-to-weight ratio and corrosion resistance. Prima Power Laserdyne has documented its fiber laser welding technology’s successful application to all of these


geometry; and there should be no undercut or concavity of the weld bead. Te ‘top-hat’ beam profile using the Laserdyne 795 high-power fiber laser beam delivery consistently produces welds meeting the required aerospace quality requirements. Titanium and nickel alloys are readily laser weldable, how-


ever special attention must be given to joint cleanliness and gas shielding. Both alloys are highly sensitive to oxidation and subject to interstitial embrittlement (via oxygen, hydrogen, nitrogen, and carbon). Arc and laser welding of these alloys requires the use of an inert shield gas to provide protection against oxidation and atmospheric contamination. Te most frequently used cover gases are argon for titanium alloys and nitrogen for nickel base alloys. When properly cleaned and shielded during welding, tita-


nium and nickel alloys are easily fiber laser welded. Te welds are consistently clean in appearance with low distortion when


When properly cleaned and shielded during welding, titanium and nickel alloys are easily fiber laser welded.


aerospace materials. Te company continues to invest heavily in the development of its fiber laser technology for welding aerospace aluminum, nickel, and titanium alloys. Aluminum alloys have low density. Although their


mechanical properties are lower than those of most steels, they have excellent strength to weight ratio. Tat charac- teristic makes them attractive to the aerospace industry for aircraſt fuselage and wing structures. Te most commonly used aluminum alloys for airframe construction are the age hardening alloys in the 2000 Series. Te 2000 Series (Al-Cu) aluminum alloy series possess high strength but somewhat lower corrosion resistance than most other aluminum alloys. Many of these alloys also have relatively good strength at elevated temperature. When lasers were first tested for welding aluminum


aerospace components in the 1970s and 1980s, deep penetra- tion keyhole welding proved difficult because of the initial high surface reflectivity to the CO2


laser wavelength and high


thermal conductivity of the material. Tis has been overcome by the availability of fiber laser sources with higher average output power and improved focusing systems, producing a power density high enough to produce a stable keyhole for welding aircraſt aluminum. With average output powers exceeding those of Nd:YAG


lasers, fiber laser can extend beyond 8 mm the range of alumi- num thicknesses that can be welded in a single pass. Tis is an important productivity advantage of fiber laser welding. Te quality requirements for welds of aerospace compo-


nents are generally very strict. Tere should be no porosity; the top, middle and bottom weld seam should be of a specified


compared to their arc-welded counterparts. Te fusion zone width and the grain growth are controlled according to laser power at the work piece and welding speed.


Enhancing the Technology To enhance the new fiber laser welding technology for


aerospace applications, Laserdyne has developed new laser beam delivery, wire feed, and process control systems. For ex- ample, the five-axis Laserdyne 795 fiber laser system is being used to weld medium to large 2D and 3D aerospace compo- nents utilizing its unique moving beam motion system. Te system is equipped with a range of focusing and shield gas as- semblies to produce oxide free welds of the desired geometry. Tis third generation BeamDirector, called BD3Y, provides


access to narrow areas for welding fixtured parts. Te clean design of the BD3Y means that there are no hoses or cables to become entangled with the workpiece or fixture. Te BD3Y also provides crash protection to avoid damage to expensive workpieces. Te control used for the laser welding system provides integrated control of the laser, 3D motion, process sensors, wire feeder, and ancillary components. Features such as SPC Data Acquisition log process parameters during weld- ing to provide a permanent record to support qualification of the welding process. Fiber laser welding will extend the application of lasers in


aerospace manufacturing by making laser welding more cost effective compared to conventional joining methods and by providing a single machine tool that is capable of not only welding, but also cutting and drilling. It has a bright future in the new and legacy airframe and aero-engine designs. ✈


Aerospace & Defense Manufacturing 2014 129


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312