This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
98


nanotimes EU-Projects


nica e la Fotoreattivita, Consiglio Nazionale delle Ricerche (CNR-ISOF) in Bolonia, have developed an efficient method to fabricate a new photonic ma- terial: carbon nanotubes coated with chemicals that are capable of displaying red light. “We take part at the project as a research group specializing in studies on lanthanide compounds. We decided to combine their high luminescent properties with excellent me- chanical and electrical characteristics of nanotubes,” says Prof. Marek Pietraszkiewicz from Warsaw’s Institute of Physical Chemistry of the Polish Acade- my of Sciences (IPC PAS).


Carbon nanotubes can be envisaged as a graphite sheet rolled-up into a seamless cylinder. The surface area of each nanotube is relatively high and allows to attach many other molecules, including those capable to emit light. “Attachment of light-emitting complexes directly to the nanotube is, however, not favourable, because the latter, as a black absorber, would highly quench the luminescence”, explains Valentina Utochnikova, a PhD student at the IPC PAS. To reduce undesired effect of light absorption, the nanotubes are first subject to a thermal reaction at temperature 140-160° C (284° F to 320° F) in a so- lution of ionic liquid modified with a terminal azido function. The reaction yields nanotubes coated with molecules acting as anchors-links. On one side the anchors are attached to the surface of the nanotube, and on the other they can attach molecules capable of displaying visible light. The free terminal of each link bears a positive charge.


So prepared nanotubes are subsequently transferred into another solution containing a negatively charged lanthanide complex – tetrakis-(4,4,4-trifluoro-1-(2- naphtyl-1,3-butanedionato)europium. “Lanthanide


11-06/07 :: June/July 2011


compounds contain elements from the VI group of the periodic table and are very attractive for pho- tonics, as they are characterised by a high lumine- scence quantum yield and a high colour purity of the emitted light,”, stresses Utochnikova.


After dissolving in solution, negatively charged europium complexes are spontaneously caught by positively charged free terminals of anchors attached to nanotubes due to electrostatic interaction. As a result, each nanotube is durably coated with mole- cules capable to emit visible light. Upon completion of the reaction, the modified nanotubes are washed and dried. The final product is a sooty powder. If the powder is, however, exposed to UV irradiation, the lanthanide complexes anchored to nanotubes start immediately to emit red light.


The concept of how to modify the nanotubes and the reagents – ionic liquid and lanthanide complex for carbon nanotube coating – has been developed in Prof. Pietraszkiewicz’s research group at the IPC PAS, whereas the modification of nanotubes and spectral studies have been performed by research groups from the University of Namur, Belgium, and CNR-ISOF from Bolonia, Italy. It is essential that chemical reactions leading to fabrication of new light-emitting nanotubes turned out to be significant- ly simpler than those used so far.


The photonic material received can be used, among others, to detect molecules including those of bio-logical importance. The identification would then take place by analysing of how the luminescence of nanotubes changes upon deposition of molecules under study thereon. Good charge conductivity com- bined with high luminescence properties make new


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111