This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
11-06/07 :: June/July 2011


nanotimes News in Brief


implantation, and later soft in order to slow down rejection.


http://www.nrp62.ch http://www.am-institute.ch


91


Tod A. Pascal, William A. Goddard, and Yousung Jung: Entropy and the driving force for the filling of carbon nanotubes with water, In: PNAS Early Edition, June 27, 2011, DOI:10.1073/pnas.1108073108: http://dx.doi.org/10.1073/pnas.1108073108


Researchers at Korea Advanced Institute of Sci- ence and Technology, Korea; and California In- stitute of Technology, USA, reported in PNAS the entropy, enthalpy, and free energy extracted from molecular dynamics simulations of water con- fined in CNTs from 0.8 to 2.7-nm diameters.


They found for all sizes that water inside the CNTs is more stable than in the bulk, but the nature of the favorable confinement of water changes drama- tically with CNT diameter. Thus they found (i) an entropy (both rotational and translational) stabi- lized, vapor-like phase of water for small CNTs (0.8 to 1.0 nm), (ii) an enthalpy stabilized, ice-like phase for medium-sized CNTs (1.1 to 1.2 nm), and (iii) a bulk-like liquid phase for tubes larger than 1.4 nm, stabilized by the increased translational entropy as the waters sample a larger configurational space. Simulations with structureless coarse-grained water models further reveal that the observed free ener- gies and sequence of transitions arise from the tetra- hedral structure of liquid water. These results offer a broad theoretical basis for understanding water transport through CNTs and other nanostructures important in nanofluidics, nanofiltrations, and desalination. © PNAS


U.S. researchers published in Science an article on carbon-based supercapacitors produced by activation of graphene. Using chemical activation of exfoliated graphite oxide, researchers at University of Texas at Austin (USA), University of Texas at Dallas (USA), Quantachrome Instruments (USA), and Brookhaven National Laboratory (USA) syn- thesized a porous carbon with a Brunauer-Emmett- Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxy- gen and hydrogen content. This sp2-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid elec- trolytes. The processes used to make this carbon are readily scalable to industrial levels. © Science


Yanwu Zhu, Shanthi Murali, Meryl D. Stoller, K. J. Ganesh, Weiwei Cai, Paulo J. Ferreira, Adam Pirkle, Ro- bert M. Wallace, Katie A. Cychosz, Matthias Thommes, Dong Su, Eric A. Stach, Rodney S. Ruoff: Carbon-Based Supercapacitors Produced by Activation of Graphene, In: Science, Vol. 332(2011), No. 6037, June 24, 2011, Pages 1537-1541, DOI:10.1126/science.1200770: http://dx.doi.org/10.1126/science.1200770


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111