This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
70


nanotimes News in Brief


Graphene // Seeing an Atomic Thickness


S


cientists from National Physical Laboratory, U.K., in collaboration with Linköping University, Swe-


den, have shown that regions of graphene of diffe- rent thickness can be easily identified in ambient conditions using Electrostatic Force Microscopy (EFM).


The exciting properties of graphene are usually only applicable to the material that consists of one or two layers of the graphene sheets. Whilst synthesis of any number of layers is possible, the thicker layers have properties closer to the more common bulk graphite.


For device applications one- and two-layer graphene needs to be precisely identified apart from the sub- strate and regions of thicker graphene. Exfoliated graphene sheets up to ~100 μm in size can be routi- nely identified by optical microscopy.


However, the situation is much more complicated in the case of the epitaxial graphene grown on silicon carbide wafers with a diameter up to 5 inches where the straightforward identification of the graphene thickness is difficult using standard techniques. This research shows that EFM, which is one of the most widely accessible and simplest implementations of scanning probe microscopy, can clearly identify diffe- rent graphene thicknesses. The technique can also be used in ambient environments applicable to industri- al requirements.


The left hand image is the topography; the middle the topography error image; and right the electrostatic force microscopy image where the tip bias has been switched half way through the image. © NPL, U.K.


11-06/07 :: June/July 2011


Tim Burnett, Rositza Yakimova, and Olga Kazakova: Map- ping of Local Electrical Properties in Epitaxial Graphene Using Electrostatic Force Microscopy, In: NANO Letters, Vol. 11(2011), No. 6, June 8, 2011, Pages 2324-2328, DOI:10.1021/nl200581g: http://dx.doi.org/10.1021/nl200581g


Functional Materials research: http://www.npl.co.uk/category/347


Quantum Phenomena: http://www.npl.co.uk/quantum-phenomena/


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111