This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
11-06/07 :: June/July 2011


nanotimes News in Brief Superconducting Nanowire Single-Photon Detectors (SNSPDs)


Researchers at Massachusetts Institute of Technology, USA, and Kavli Institute of Nanoscience, Delft University of Technology, The Netherlands, present 20 and 30 nm nanowire-width Superconducting Nanowire Single-Photon Detectors (SNSPDs), which were more robust to constrictions and more re- sponsive to 1550-nm-wavelength photons than standard SNSPDs. They implemented a parallel-nanowire structure to read out ultranarrow-nanowire detectors with room-temperature electronics.


Francesco Marsili, Faraz Najafi, Eric Dauler, Francesco Bellei, Xiaolong Hu, Maria Csete, Richard J. Molnar, and Karl K. Berggren: Single-Photon Detectors Based on Ultranarrow Superconducting Nanowires, In: NANO Letters, Vol. 11, Issue 5, May 11, 2011, Pages 2048-2053, DOI:10.1021/nl2005143: http://dx.doi.org/10.1021/nl2005143


85


Core-shell Nanoparticles


MIT researchers employed a modular design for the high-throughput study of 1,536 structurally distinct nanoparticles with cationic cores and variable shells. This enabled elucidation of complexation, internali- zation, and delivery trends that could only be learned through evaluation of a large library. Using robotic automation, epoxide-functionalized block polymers were combinatorially cross-linked with a diverse library of amines, followed by measurement of molecular weight, diameter, RNA complexation, cellular internalization, and in vitro siRNA and pDNA delivery.


Daniel J. Siegwart, Kathryn A. Whitehead, Lutz Nuhn, Gaurav Sahay, Hao Cheng, Shan Jiang, Minglin Ma, Abigail Lytton-Jean, Arturo Vegas, Patrick Fenton, Christopher G. Levins, Kevin T. Love, Haeshin Lee, Christina Cortez, Sean P. Collins, Ying Fei Li, Janice Jang, William Querbes, Christopher Zurenko, Tatiana Novobrantseva, Robert Langer, and Daniel G. Anderson: Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery, In: PNAS Early Edition, July 22, 2011, DOI:10.1073/pnas.1106379108: http://dx.doi.org/10.1073/pnas.1106379108


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111