This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
92


nanotimes News in Brief


Researchers presented in PNAS numerical simulati- ons that show that multivalent nano-particles can be designed such that they approach the “on-off” bin- ding behavior ideal for receptor-concentration se- lective targeting. They proposed a simple analytical model that accounts for the super selective behavior of multivalent nano-particles. The model shows that the super selectivity is due to the fact that the number of distinct ligand-receptor binding arrange- ments increases in a highly nonlinear way with re- ceptor coverage. Somewhat counterintuitively, their study shows that selectivity can be improved by ma- king the individual ligand-receptor bonds weaker. © PNAS


Francisco J. Martinez-Veracoechea and Daan Frenkel: Designing super selectivity in multivalent nano-particle binding, In: PNAS Early Edition, June 20, 2011, DOI: 10.1073/pnas.1105351108: http://dx.doi.org/10.1073/pnas.1105351108


11-06/07 :: June/July 2011


Various ratios of rhenium were added to WB4 in an attempt to increase hardness. © PNAS


Reza Mohammadia, Andrew T. Lech, Miao Xie, Beth E. Weaver, Michael T. Yeung, Sarah H. Tolbert, and Richard B. Kaner: Tungsten tetraboride, an inexpensive super- hard material, In: PNAS Early Edition, June 20, 2011, DOI:10.1073/pnas.1102636108: http://dx.doi.org/10.1073/pnas.1102636108


Tungsten tetraboride (WB4) is an interesting can- didate as a less expensive member of the growing group of superhard transition metal borides. WB4 was successfully synthesized by arc melting from the elements. Characterization using powder X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) indicates that the as-synthe- sized material is phase pure. The zero-pressure bulk modulus, as measured by high-pressure X-ray diffraction for WB4, is 339 GPa. Mechanical testing using microindentation gives a Vickers hardness of 43.3 ± 2.9 GPa under an applied load of 0.49 N.


The world’s first three-dimensional plasmon rulers, capable of measuring nanometer-scale spatial changes in macromolecular systems, have been de- veloped by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with re- searchers at the University of Stuttgart, Germany. These 3D plasmon rulers could provide scientists with unprecedented details on such critical dynamic events in biology as the interaction of DNA with enzymes, the folding of proteins, the motion of pep- tides or the vibrations of cell membranes.


“We’ve demonstrated a 3D plasmon ruler, based on coupled plasmonic oligomers in combination with high-resolution plasmon spectroscopy, that enables us to retrieve the complete spatial configuration of complex macromolecular and biological processes, and to track the dynamic evolution of these pro- cesses,” says Paul Alivisatos, director of Berkeley


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111