This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
12


nanotimes Research


According to phase transition theory, a solid crystal will fluctuate between two equilibrium structures near the phase transition point before reaching a stable configuration, and that this region of transition broadens in small crystals. To test this theory, Zheng, Alivisatos and their co-authors zapped copper sulphi- de nanorods with an electron beam from the TEAM 0.5 microscope then watched for and saw the pre- dicted fluctuations.


“Before the TEAM microscopes, such details of the fluctuations between two solid-state phases in a nanocrystal could not have been observed,” says Zheng. “Our results should be of interest to theorists attempting to simulate structural transformations in solids as neither a study on bulk materials nor on the ensemble of nanomaterials has the capability of re- vealing such specific features of the phase transition pathways.”


TEAM stands for Transmission Electron Aberration- corrected Microscope. TEAM 0.5 and its sister in- strument TEAM 1.0 are capable of producing images with half-angstrom resolution – less than the diame- ter of a single hydrogen atom. Both microscopes are housed at Berkley Lab in DOE’s National Center for Electron Microscopy (NCEM).


The next step for her, Zheng says, will be to address questions concerning the transport of ions with battery material changes at the electrode/electrolyte inter- face, and structural changes of nanoparticle catalysts.


“Such studies share the same aim of developing mi- croscopic understanding of the structural transforma- tions of materials, especially those that are important for energy applications,” Zheng says. “In situ trans-


11-06/07 :: June/July 2011


HRTEM micrographs showing the low-chalcocite (left) and high-chalcocite atomic structures of a copper sulfide nanorod. © Image taken at TEAM 0.5, National Center for Electron Microscopy, Berkeley Lab


mission electron microscopy, especially our recent technical advances in dynamic imaging through liquids or gases, as well as at the applied electric bia- sing, provides a powerful tool for such studies.”


Haimei Zheng, Jessy B. Rivest, Timothy A. Miller, Bryce Sadtler, Aaron Lindenberg, Michael F. Toney, Lin-Wang Wang, Christian Kisielowski, A. Paul Alivisatos: Observa- tion of Transient Structural-Transformation Dynamics in a Cu2


S Nanorod, In: Science, Vol. 333(2011), No. 6039, July


08, 2011, Pages 206-209, DOI:10.1126/science.1204713: http://dx.doi.org/10.1126/science.1204713


http://www.lbl.gov


Paul Alivisatos: http://www.cchem.berkeley.edu/pagrp/


National Center for Electron Microscopy: http://ncem.lbl.gov/


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111