11-06/07 :: June/July 2011
nanotimes News in Brief F
rom the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley
Lab), a nanostructured anti-fogging technology for glass (1) that out performs anything on the market today, and a new version of Magnetic Resonance Imaging (MRI) – called Magnetic Resonance Mi- croarray Imaging (2) – that delivers results a million times faster than conventional MRI, have both won 2011 R&D 100 Awards.
Presented by R&D Magazine, the R&D 100 Awards recognize the year’s 100 most significant proven technological advances. The two awards in 2011 bring the total of Berkeley Lab’s R&D 100 wins to 58, plus two Editors’ Choice Awards.
In all, DOE’s national laboratories and facilities won 36 R&D 100 Awards this year. In response, Energy Secretary Steven Chu released this statement.
“I want to congratulate this year’s R&D 100 award winners. The Department of Energy’s national labo- ratories and facilities are at the forefront of innova- tion, and it is gratifying to see their work recognized once again. The cutting-edge research and deve- lopment done in our national labs and facilities is helping to meet our energy challenges, strengthen our national security and enhance our economic competitiveness.”
1
Invention of the “Nanostructured An- tifogging Coating” technology was led by Samuel Mao and Vasileia Zormpa,
of Berkeley Lab’s Energy and Environmental Techno- logies Division (EETD). This technology is designed to provide a durable, nontoxic, antifogging and self-
Glass slide placed in a freezer then exposed to humid air at room temperature. Fog formed on the uncoated portion of the slide (a) while portion (b), coated with superhydro- philic nanoparticles, remained fog free. © LBL
65
cleaning coating for architectural glass, windshields, eyewear and solar panels.
The coating consists of nanoparticles made from superhydrophilic titanium dioxide. When applied to glass surfaces, these nanoparticles cause water droplets to collapse and flatten within fractions of a second. Water vapor, however, can infiltrate spaces formed by nanoparticle overhangs to dislodge dust and grime from the coated surface. This keeps the glass clean, a big water- saving factor for windows in commercial buildings. It could also be used to improve the efficiency of solar panels in dusty, desert environments.
“No chemical catalysts or UV radiation are required to activate the coating so therefore it works at night,” says Mao, who directs the Clean Energy Laboratory for EETD. “Also, because the coating is non-toxic,
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111