search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Eubiotics: Definition and different concepts By Dr. Jiri Broz and Dr. Christophe Paulus, DSM Animal Nutrition & Health


which is related to the Greek term ‘Eubiosis’, referring to an optimal balance of microflora in the gastrointestinal tract. The main purpose of using such eubiotics is to maintain the intestinal eubiosis, which will result in an improved health status and performance in farm animals.


About 20 years ago, the use of feed antibiotics and some other microbial compounds as performance enhancers became the target of increasing public criticism and a topic of political controversy (particularly in the EU countries). As the first country in Europe, Sweden banned the use of antimicrobial growth promoters as early as 1986. The use of avoparcin as a growth promoter was banned first in Denmark (May 1995), subsequently in Germany (January 1996) and finally in the remaining EU countries by April 1997. Based on various safety concerns and partly as a precautionary measure, the EU Council of Ministers suspended the authorization of four other feed antibiotics (spiramycin, tylosin, virginiamycin, Zn-bacitracin) by July 1999, and two quinoxaline derivatives (carbadox, olaquindox) by September 1999. By January 2006, an EU ban on the use of the four remaining feed


antibiotics, namely flavophospholipol, avilamycin, salinomycin-Na and monensin-Na (for beef cattle only) became effective. This total ban on the use of antibiotics as growth promoters has been integrated into a new EU regulation concerning feed additives (No. 1831/2003). Before the implementation of this complete ban on the use of antibiotic growth promoters (AGP), some experts attempted to assess possible effects on growth rate and feed conversion efficiency and discussed possible alternatives after the ban (Brufau, 2000; Verstegen & Schaafsma, 1999; Wenk, 2003; Witte et al., 2000). Serious problems were expected, particularly in early weaned piglets, with an average reduction in daily weight gain of 8% and a 5% increase in feed consumption per gain. In addition, a dramatic deterioration in the general health status of piglets was expected, resulting in a marked increase in prophylactic use of various therapeutic antibiotics. This trend has indeed been observed in many countries after the implementation of this general ban.


Eubiotics: Alternative products for replacement of AGP Before discussing which currently approved feed additives might be used as effective alternatives for replacement of AGP, it would be helpful to approach this topic from a scientific point of view, taking into account their principal mode of action. There is currently no doubt that their efficacy is primarily based on antimicrobial effects and their ability to influence and partly modify the composition and overall concentration of intestinal microflora. Taking this into consideration, we can see how various new and some traditional feed additives claim to affect the composition or activity of intestinal microbiota, such as organic acids, probiotics, prebiotics, essential oil compounds, and Zn and Cu compounds. In recent years, some of those have been described by the general term ‘Eubiotics’,


PAGE 34 JULY/AUGUST 2019 FEED COMPOUNDER


Organic acids Organic acids and some of their salts have been added to compound feeds, for many years, in particular for early weaned piglets. The potential of diet acidification in order to overcome digestive insufficiency and post-weaning problems in piglets has been studied for a long time. The efficacy of fumaric acid, citric acid, formic acid, lactic acid, sorbic acid and also of some salts (Ca-formate, Na-formate) has been demonstrated. These compounds are officially approved in the EU as feed preservatives, however, some of them are used primarily for the stabilization of health status and performance enhancement at the dietary inclusion levels of 0.5 to 2.0% (Gabert & Sauer, 1994; Partanen & Mroz, 1999). In order to reduce dietary inclusion levels and enhance their efficacy at economically feasible costs, either blends of organic acids or coated forms have appeared on the market in recent years. Various hypotheses regarding the mode of action and beneficial effects of organic acids have been described in the literature, such as:


• Improvement of palatability and reduction of diet pH; • Antimicrobial and preservative effects in the feed; • Reduction of gastric pH and enhancement of pepsin activity; • Effects on microflora in the gastro-intestinal tract, reduction of coliforms and diarrhea;


• Increased digestibility of nutrients. Since July 2001, potassium diformate has been approved as a feed


additive in the EU and included in the zootechnical additive group. In May 2003, benzoic acid was approved as a feed additive for growing-finishing pigs at the inclusion levels of 0.5 to 1.0% and included in the acidity regulator group. Due to its specific metabolism, this organic acid shows multiple beneficial effects (Broz, 2004). Dietary supplementation results in a decrease in urinary pH accompanied by a reduction in ammonia emission and improved growth performance. Since November 2006, benzoic acid at the inclusion level of 0.5% has also been approved for use in weaned piglets, as a zootechnical additive. Due to its antibacterial activity and slower absorption, dietary benzoic acid is also capable of significantly reducing the density and metabolic activity of intestinal microflora in piglets (Kluge et al, 2006; Broz & Paulus, 2006). Balance trials have confirmed significant beneficial effects on the apparent ileal digestibility of dietary energy and nitrogen, as well as a significant increase in nitrogen retention. In a series of performance trials, benzoic acid at 0.5% has repeatedly resulted in significant improvements in piglet growth rates after weaning.


Probiotics Probiotics are viable microorganisms that are used as feed additives in monogastric animals. The probiotic concept is primarily based on the assumption that direct feeding of microbial cultures may affect the


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76