search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Company insight An alternative to F


rom medical robotics to handheld tools, healthcare today is using smarter surgical devices that give force and pressure feedback. Load cells help in many applications such as providing haptic feedback for robotics or handheld instruments used in minimally invasive surgery, pressure sensing for catheter tip steering and ablation, torque sensing of rotary tools, and more. These high-value instruments are too expensive for single use and require autoclave sterilisation for reuse. Until recently, autoclavable sensors have required complex, expensive packaging to ensure survivability and reliability. Strain Measurement Devices (SMD) now offers autoclavable strain gauge technology on all standard and custom sensors. These harsh environment sensors are completely hermetic, and survive 100% humidity, pH of 11, and temperatures up to 200°C.


Autoclaving is a sterilisation process that uses steam at high temperature and pressure to kill bacteria, viruses and fungi and prevent patient infection. A typical process consists of a 20-minute soak with saturated steam at 134°C and 15psi, and some cycles may include detergents as well. This harsh process can damage sensitive strain gauges and ruin the


Adhesive bonding (bonding foil) Dielectric


Abrupt boundary change


Adhesive layer


Substrate Dielectric


Interdiffusion layer


Substrate


SMD uses a high-energy, thin-film sputter deposition process instead of organics to bond strain gauges to a substrate.


90


Gradual boundary change


hermetically sealed sensors for autoclave applications


With the surge of new medical and surgical devices that are in use today, it is important to have the very best-in-class technology and sensors. Strain Measurement Devices now offers autoclavable strain gauge technology on all standard and custom sensors.


SMD’s patented autoclavable force sensors can come customised, including weld-on gauges.


organic adhesives used to bond traditional strain gauges to a substrate. This can result in dramatic zero balance or span instability and lead to catastrophic failure. Industry focus has been to better protect the strain gauge from this harsh environment. A natural solution to this is using glass-to-metal headers and a welded hermetic body. However, this solution is complex,


Sputtered thin film bonding Dielectric


expensive and inflexible, holding back creative solutions to emerging smart surgical tools.


SMD forgoes the use of organics entirely by using a high-energy thin-film sputter deposition process to bond strain gauges to a substrate. This process forms a molecular bond with the component, with no adhesives involved, so the structure is much more stable. The strain gauges themselves are accurately positioned and balanced using state-of-the-art laser trimming technology, while termination to the outside world can be through wire bonds to ceramic circuits with soldered leads or flex circuits. The whole sensor is then encapsulated to protect it from the environment.


Medical Device Developments / www.nsmedicaldevices.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136