WATER SAFETY
materials, inappropriate installations and heat loos and gain. Hence, the use of biocides to control the overgrowth of microorganisms appears attractive. However, the application of biocides must be tailored
to every individual building and water system. Biocide use does not overcome the inadequacies in design, construction and maintenance and as such their use can often fail to control the presence of pathogens. The chemical romance may be short-lived.
References 1 DWI. The Water Supply (Water Quality) Regulations 2016. (2015).
2 Falkinham, J. O. Living with Legionella and other waterborne pathogens. Microorganisms 8, 2026 (2020).
3 Flemming, H.-C. & Wingender, J. The biofilm matrix. Nature Reviews Microbiology 8, 623–633 (2010).
4 Garvey, M. I. et al. The sink splash zone. J Hosp Infect 135, 154–156 (2023).
5 DHSC. HTM 04-01: Safe water in healthcare premises. (2016). 6 Mein, I. & Liddell, S. Does ongoing remote monitoring of subordinate and tertiary loops highlight a hidden and significant risk of Legionella proliferation? Waterline 36–37 (2022).
7 Whapham, C. A. & Walker, J. T. Too much ado about data: continuous remote monitoring of water temperatures, circulation and throughput can assist in the reduction of hospital- associated waterborne infections. Journal of Hospital Infection 152, 47–55 (2024).
8 HSE. HSG 274 Legionnaires’ disease - Technical guidance Part 2: The control of legionella bacteria in hot and cold water systems 2014. (2014).
9 Wang, Y. et al. The hidden dancers in water: the symbiotic mystery of Legionella pneumophila and free-living amoebae. Front. Microbiol. 16, (2025).
10 Hammes, F. et al. Foresight 2035: a perspective on the next decade of research on the management of Legionella spp. in engineered aquatic environments. FEMS Microbiol Rev 49, fuaf022 (2025).
11 Lee, S. et al. Moving beyond the silos of opportunistic pathogen and disinfection byproduct research to improve drinking water system management. Environ Sci Technol 59, 8900–8921 (2025).
12 Song, Y., Pruden, A., Edwards, M. A. & Rhoads, W. J. Natural organic Matter, orthophosphate, pH, and growth phase can limit copper antimicrobial efficacy for Legionella in drinking water. Environ Sci Technol 55, 1759–1768 (2021).
13 Hintz, C. L., Morris, B., Witt, S., Sojda, N. & Buse, H. Y. Cu- and Ag-mediated inactivation of L. pneumophila in bench- and pilot-scale drinking water systems. Appl Environ Microbiol 91, e0107324 (2025).
14 Grimard-Conea, M., Reyes, E. V., Marchand-Senécal, X., Faucher, S. P. & Prévost, M. In situ dosing of monochloramine in a hospital hot water system results in drastic microbial communities changes. Sci Total Environ 997, 180204 (2025).
15 Wang, Y., Wu, G., Wan, Q., Wang, J. & Wen, G. Comparisons on the evaluation methods of chlorine resistance fungi in drinking water. Environ Res 278, 121650 (2025).
16 Martin, R. L. et al. Chlorine Disinfection of Legionella spp., L. pneumophila, and Acanthamoeba under Warm Water Premise Plumbing Conditions. Microorganisms 8, 1452 (2020).
17 O’Reilly, P., Loiselle, G., Darragh, R., Slipski, C. & Bay, D. C. Reviewing the complexities of bacterial biocide susceptibility and in vitro biocide adaptation methodologies. NPJ Antimicrob Resist 3, 39 (2025).
18 World Health Organisation. Silver in drinking-water. Background document for development of WHO Guidelines for drinking-water quality. 2021
https://www.who.int/ publications/i/item/WHO-HEP-ECH-WSH-2021.7. (2021). 19 Cullom, A. et al. Premise plumbing pipe materials and in-
building disinfectants shape the potential for proliferation of pathogens and antibiotic resistance genes. Environ Sci Technol 57, 21382–21394 (2023).
20 Oliveira, I. M., Gomes, I. B., Simões, L. C. & Simões, M. A review of research advances on disinfection strategies for biofilm control in drinking water distribution systems. Water Res 253, 121273 (2024).
21 Xi, H., Ross, K. E., Hinds, J., Molino, P. J. & Whiley, H. Efficacy of chlorine-based disinfectants to control Legionella within premise plumbing systems. Water Res 259, 121794 (2024).
22 Siponen, S. et al. Effect of pipe material and disinfectant on active bacterial communities in drinking water and biofilms. J Appl Microbiol lxaf004 (2025) doi:10.1093/jambio/ lxaf004.
23 Patterson-Fahy, K., Carter, R., Taylor, S. L., Guo, J. & Thomson, R. M. Disinfectant and antibiotic resistance in Mycobacterium abscessus water isolates. Microbiol Spectr 13, e0337424 (2025).
24 Coombs, K., Rodriguez-Quijada, C., Clevenger, J. O. & Sauer-Budge, A. F. Current understanding of potential linkages between biocide tolerance and antibiotic cross-resistance. Microorganisms 11, 2000 (2023).
25 Ferro Orozco, A. M. & Contreras, E. M. Effect of a subinhibitory benzalkonium chloride concentration on the development of antibiotic resistance and the performance of activated sludge semicontinuous reactors. Water Environ Res 97, e70170 (2025).
26 Hayward, C., Whiley, H. & Ashbolt, N. J. The plumbing problem: rising antimicrobial resistance in building water systems. Curr Opin Infect Dis 38, 347–353 (2025).
27 Stefaniak, K., Harnisz, M., Męcik, M. & Korzeniewska, E. ARB inactivation, ARGs and antibiotics degradation in hospital wastewater. J Hazard Mater 495, 138833 (2025).
28 Shao, D. et al. Quaternary Ammonium Compounds: A new driver and hidden threat for mcr-1 prevalence in hospital wastewater and human feces. Environ Sci Technol 59, 1565–1576 (2025).
29 Snell, L. B. et al. The drainome: longitudinal metagenomic characterization of wastewater from hospital ward sinks to characterize the microbiome and resistome and to assess the effects of decontamination interventions. J Hosp Infect 153, 55–62 (2024).
30 Ordinance on the Quality of Water Intended for Human Consumption (Trinkwasserverordnung – TrinkwV). Accessed at:
https://www.gesetze-im-internet.de/englisch_trinkwv/.
31 Infection Protection Act 20 July 2000 (BGBL. I S. 1045), updated as Article 8v of the Act on December 12, 2023 (BGBl. 2023 I Nr. 359).
https://www.gesetze-im-internet.de/ifsg/.
32 DVGW W 551 - 2004-04 - Drinking Water heating and drinking water piping systems – Technical measures to reduce Legionella growth – Design, construction, operation and rehabilitation of drinking water systems”, https://www.
dinmedia.de/en/technical-rule/dvgw-w-551/74193855.
33 Federal Environmental Agency (Umweltbundesamt), “Bewertungsgrundlage: Bewertungsgrundlage für Kunststoffe und andere organische Materialien im Kontakt mit Trinkwasser (KTW-BWGL), February 24, 2025 https://www.
umweltbundesamt.de/sites/default/files/medien/5620/ dokumente/ktw-bwgl_allgemeiner_teil_-_5._aenderung_ de.pdf.
34 werk21, R. Bewertungsgrundlage für metallene Werkstoffe im Kontakt mit Trinkwasser. Umweltbundesamt https://www.
umweltbundesamt.de/dokument/bewertungsgrundlage-fuer- metallene-werkstoffe-im-0 (2020).
35 Umsetzung zur Erfüllung der Anforderungen der Trinkwasserverordnung in Bezug auf Planung, Errichtung und Betrieb von Trinkwasserinstallationen in Gebäuden”, July 17th, 2024,
https://www.btga.de/wp-content/ uploads/2024/08/p2324-2024-07-17_BTGA- DVGW-figawa-gefma-ZVSHK_Verbaendeinformation_ Trinkwasserinstallation.pdf.
Dr Vicky Katsemi
Dr Vicky Katsemi, MBA is a consultant with 17 years of national and international experience in water hygiene and infection control. She advises healthcare and non-healthcare institutions and industry on the management of water installations, compliance with the national and international regulations, outbreak management and infection control, and the development of Risk Assessments, Water Safety Plans and other legally required documentation. Dr Katsemi also conducts educational workshops and trainings in English, German, and Greek, and regularly presents at international conferences. She is an active member of several societies and working groups, including DGKH, WMS and ESGLI. Based in Frankfurt, Germany, Dr Katsemi collaborates with institutions across Europe and the Middle East.
January 2026 Health Estate Journal 39
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88