Food & Beverage Analysis
Food Analysis has Never Been so Challenging or Exciting
Graham Meller
We recently interviewed Tim Lumb, Chemistry Technical Manager for ALS; one of the world’s leading providers of food and drink testing services. Tim is responsible for driving innovation in the company’s laboratories; developing new methods and evaluating new technologies to help meet the ever-changing needs of customers and regulations.
1. How and why did you develop a career in food testing?
Tim: Like most people, I am very interested in food, but I have always had an aptitude for chemistry, so it was no surprise when my fi rst job was a laboratory technician measuring the sugar content of foodstuffs. Over the next 15 years I must have performed every possible role in a food testing laboratory, and this has enabled me to develop my understanding of the testing and analysis of a wide range of materials, with a broad spectrum of analytical techniques and methods. This work has included due diligence activity for acquisitions, as well as overseas postings; overseeing the integration of an acquired laboratory in Portugal, for example.
As a consequence of this experience, I have become Technical Manager for ALS in the UK, Food Chemistry Technical Lead in the EU, and Innovation Coordinator. All of which combine to provide a challenging but hugely rewarding job in which I am constantly looking for ways to analyse new parameters, in different materials, at lower levels, faster, with greater accuracy, and at a lower cost than ever before.
2. Can you tell us a little more about ALS?
Tim: ALS is a leading testing, inspection, certifi cation and verifi cation company, with its headquarters in Australia. Servicing multiple industries globally, ALS employs over 15,000 staff in more than 65 countries. The Group has three main divisions: Commodities (Geochemistry, Metallurgy, Mine Site, Coal and Inspection); Life Sciences (Environmental, Food & Pharmaceutical, Animal Health and Electronics), and Industrial (Asset Care and Tribology).
The ALS food testing laboratories provide consultancy services as well as a comprehensive range of analytical tests including microbiological, nutritional, vitamins and minerals, pesticides and contaminants, allergens and speciation. In the food and beverage market our work is designed to provide assurance that products are (1) Safe, (2) Nutritious and (3) Authentic.
3. Can you briefl y describe the most common tests in your laboratories?
Tim: At ALS our aim is to provide a one-stop-shop for food and beverage testing, so we have established a ‘hub and spoke’ system in which our local laboratories focus on the most popular tests, and the hub labs deliver a full service and some of the more specialist services.
The largest volume of tests that we perform are microbiological to ensure the quality and safety of food destined for supermarkets. Food microbiology testing includes a range of pathogens such as Salmonella, Listeria,
E.coli etc. Given the volume of work required, our microbiological labs are often located close to food manufacturers. In addition to routine microbiological analysis of food samples, we also provide shelf-life evaluation, environmental monitoring, hand swabs for Staphylococcus aureus and
E.coli for example, and water testing.
Nutrition tests are generally performed for ‘back of pack’ purposes, providing data on the levels of Water, Ash (drying ovens), Protein (Kjeldahl or Dumas combustion), Total Fat (NMR), Fibre (enzyme digestion), Sugar (HPLC), Fatty Acids (GC), Sodium (ICP), etc.
Authenticity testing involves a variety of techniques for checking characteristics such as provenance; ensuring that Parma ham is from Parma for example. Content verifi cation is an important part of our work. This might be checking that the only meat in a beef lasagne is beef, or that the white fi sh specifi ed on a label has not been substituted by something else. Authenticity testing has been greatly enhanced by the development of genetic testing using PCR (Polymerase Chain Reaction) instrumentation.
Next-generation sequencing (NGS) is also employed for testing vegetables, meat and fi sh, this allows for testing of multiple species simultaneously.
The requirement for testing allergens continues to grow, and involves a variety of techniques. For example, ELISA (Enzyme Linked Immunosorbent Assay) methods are utilised for the identifi cation of specifi c proteins such as gluten, soya and egg; PCR enables the detection of potential allergens such as celery, and sulphites can be measured by distillation with the Monier–Williams method.
Graham Meller Tim Lumb
Pesticide testing is also necessary for fresh produce as part of supermarket due diligence. Testing is also required for the certifi cation of organic produce, and during harvest periods some farmers send crop samples for same-day analysis to facilitate timely harvesting.
Vitamin testing, using HPLC, GC, microbial, or fl uorometric techniques, is more commonly required for the analysis of beverages, baby food and dairy products.
4. Are your food and beverage laboratories able to also test other materials? For example, some clothing manufacturers do not currently wish to purchase cotton from a specifi c region in China.
Tim: Yes, we also conduct analytical tests for a wide variety of non-food samples, and this is a key focus for many of the ALS centres of excellence. We are able to determine the country of origin for agricultural products. Normally, we would employ stable isotope analysis, based on a chemometric statistical profi le, so analysis would need to be performed on a reference data set of cottons from the various regions. If the analysis was on a fi nished product it might be made too complicated due to the processing chemicals, but it is certainly possible on raw cotton. In addition, it may be possible to look at O and H isotopes for the water used in certain districts which might give an indication of where a product is processed, but this would be more challenging than the base agricultural product.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64