4 Buyers’ Guide 2021
LC-MS Analysis of Therapeutic Oligonucleotide and Related Products
A comparison of TQ and Q-TOF Systems
Tairo Ogura1 , Toshiya Matsubara2 , Noriko Kato3
1,2MS Business Unit, Life Science Business Department, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan 3
Global Application Development Center, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan Background
The purpose of this study is the qualitative analysis and quantitation of a phosphorothioate oligonucleotide. Therapeutic oligonucleotides are synthetic oligonucleotides composed of 10-30 nucleic acid bases. They are aimed directly at targets such as mRNAs, miRNAs or target proteins that are involved in disease pathogenesis. Both sample preparation and method development are simplified using MS detection to analyse oligonucleotides when compared to immune-based detection methodologies such as ELISA. MS detection also provides the added benefit of being the only method capable of detecting slight differences in modifications and resembling impurities based on accurate molecular weight information.
In this study, a molecular weight determination and quantitation of a therapeutic oligonucleotide and related products was performed utilising liquid chromatography-mass spectrometry. The therapeutic oligonucleotides used in the analysis were Mipomersen (Kynamro) and its analogues. From the results of the charge state deconvolution, the molecular weight of the oligonucleotides was confirmed with a mass error of less than 1 ppm.
In the development of a quantitative method using Q-TOF LC-MS or Triple Quadrupole LC-MS, a product ion derived
from phosphorothioate was selected as a multi-reaction monitoring (MRM) transition, and a highly-sensitive MRM-quantification was successfully achieved. Since the phosphorothioate modification is one of the most common methods used to increase the stability of oligonucleotides in vivo, it is expected that quantitative methods constructed in the same way as this can be applied to a variety of therapeutic oligonucletotides.
Introduction Therapeutic oligonucleotides are synthetic Table 1: Oligonucleotide sequences of Mipomersen analogues.
oligonucleotides with a chemical backbone structure composed of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) [1]. They are ‘molecular-targeted drugs’ aiming specific mRNAs, miRNAs and proteins related to the onset of diseases and regulating their expression and function. Although they work as a molecular target drug, these therapeutic oligonucleotides share the favourable attribute of antibody therapeutics and low- molecular drug molecules in that they can be chemically synthesised in the laboratory, making it possible to reduce manufacturing costs compared to an antibody. They are expected to be the next-generation
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76