47
It is rugged enough to ship via common carrier or in the overhead compartment of an airplane.
this could compromise the portability of the device to the point that it may offer few advantages over a conventional HPLC system. Another compromise is the manual injector valve. An autosampler can be used with the instrument, again at the cost of mobility. A column heater is not included in the base design but could be added.
Some Applications where the technology has already been utilised
Figure 2: Stowing a SmartLife LC in the overhead compartment en route to a demonstration in Ghana. When traveling, mobile phases are generally prepared after arrival.
This design aspect potentially avoids the need for service in the field. Malfunctioning units can readily be shipped back to the manufacturer for repairs while a loaner unit goes the other way to minimise downtime. Alternatively, all critical components (pumps; detector; injector valve) are readily accessible and can easily be serviced or replaced.
The instrument control and data collection is controlled locally using Clarity®
from
DataApex Ltd, which is installed on a tablet that fits inside the lid of the case and operates with Windows 10. Auxiliary devices from other manufacturers can be added to the system as long as the devices are Clarity- compliant (i.e., have the necessary drivers). The tablet is WiFi-capable, facilitating remote troubleshooting, and data can be transmitted anywhere. The USB hub has two readily accessible ports. These can be used for data output or for connecting any USB-connected device. Devices that are not Clarity-compliant can still be controlled within the chromatography program with the use of an appropriate converter box such as the Colibrick from DataApex.
A full-featured HPLC system can be both portable and inexpensive only with some compromises. The main compromise with the SmartLC is the detector. The default detector module measures absorbance using an LED with a single wavelength. Any single wavelength can be selected within the range of available LED’s, currently 235 nm and higher. Installation of an alternative LED module takes only several minutes. A dual-wavelength LED module is optional. Other types of detectors can be used, but
The instrumentation has been used in a variety of different applications to great effect. The following applications highlight the portability and applicability of this type of instrument.
A. Haemoglobins: Haemoglobin is probably the most widely analysed protein in the world. About 7% of the human race are carriers of a gene for a significant haemoglobinopathy such as sickle cell disease. In parts of sub-Saharan Africa the incidence of carriers is as high as 35%. The version of the SmartLC used for haemoglobin analysis is called SmartLife LC™, and uses a detector wavelength of 415 nm. Six units are now in use in sub-Saharan Africa. An obvious use of a portable HPLC is its use in the field for analysis of haemoglobin variants in remote regions. This can involve either a single drop of blood (4 µl of whole blood suffices for 50 replicate analyses) or archived samples in the form of dried blood spots. The out-of- pocket expense for the reagents and HPLC
Figure 3: Quick analysis of a composite sample of the major haemoglobin variants. Column: PolyCAT A®
,
35x4.6-mm, 3-µm, 1500-Å. Flow rate: 1.5 ml/min. Detection: 415 nm. Backpressure: 125 bar. Mobile phase A: 20 mM bis-tris + 2 mM KCN, pH 6.90. Mobile phase B: 20 mM bis-tris + 2 mM KCN + 200 mM NaCl, pH 6.55. Gradient: 0-0.10’, 83-85% A; 0.10-1.65’, 85-62% A; 1.65-2.15’, 62-52% A; 2.15-2.40’, 52-15% A; 2.40-2.90’, 15% A; 2.90-3.10’, 15-83% A; 3.10-4.00’, 83% A.
Figure 4: Gradient separation of cannabinoids. Column: Halo®
C18, 100x4.6-mm, 2.7 µm, 90 Å. Flow rate: 1 ml/min. Detection: 280 nm. Gradient: 0.1% formic acid with 65-70% ACN in 21’ with a 4-minute delay.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76