search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
3 Optimisation Starts Before you Run a Single Experiment


Brightly-coloured 3D graphs, relating LC method parameters to method performance - these tools help chromatographers explore their design spaces, choose optimal and robust conditions, and justify their choices to management, customers, and regulators. They cut down on time spent trying conditions by trial-and-error, and give you more confidence that your methods will perform over time.


But getting a good 3D optimisation requires more than running a handful of experiments and clicking ‘graph’. The real work is in the planning.


To find a point that gives good resolution and robustness - within reasonable time - the proper space must be explored. Initial conditions should be chosen to maximise success.


That means choosing solvents and pH ranges based on compound physicochemical properties, like pKa. These properties can be determined experimentally, or more likely, as the number of new analytes vastly exceeds experimental capacity, by software prediction. Choosing strong starting conditions also means screening an orthogonal series of columns, to see how different mobile phases interact with your analytes.


Selecting a strong starting point makes it more likely that your optimisation will find useful maxima. Equally important is optimisation accuracy - a good-looking graph is no use if validation experiments can’t confirm its predictions. Here, modelling equations play an important role. Different mathematical relationships best model the influence of different experimental parameters, and knowing which equations to start with and whether or how to change them will help improve prediction accuracy.


But many chromatographers don’t have the time or expertise to fiddle around with developing their own mathematical models. That’s where method-development software, like ACD/AutoChrom, can help. AutoChrom®


A good method-development package will also help in planning by suggesting initial starting points based on strong scientific rationale. AutoChrom does this as well, with tools for physicochemical-property prediction, pH selection, buffer calculations, and column comparison.


With a better understanding of how to plan and start modelling, chromatographers can get the results they are looking for from 3D optimisation - developing rational methods that perform well over time.


More information online: ilmt.co/PL/1JXP suggests the best equation for each optimised parameter, but


also provides the flexibility for users to try different equations, including polynomials. This combination of expertise and customisability gives improved simulation results.


Reproducibility in BioLC... ...YMC!


• RP-BioLC (U)HPLC


Discover more at www.ymc.de • High Recovery IEX • High Efficiency HIC & SEC


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76