search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
36 Buyers’ Guide 2021


Hybrid Structures for Complex Analytical Instruments


Christian Ruf, R&D Manager, Agilent Technologies (christian.ruf@agilent.com), Armin Steinke, R&D Manager, Agilent Technologies (armin.steinke@agilent.com)


The use of microfluidic metal structures in complex integrated analytical systems that are mostly composed of conventional elements, brought with it a vast number of interfaces. This introduced challenges regarding reproducibility, dwell volumes, variances, method compatibility and standardisations. Hybrid structures drastically reduce the number of interfaces while increasing the proximity between the electronic and fluidic realm, thus providing a solution to complex integrated assemblies, requiring fewer external interfaces, and offering new possibilities regarding integration depth, allowing for entirely new arrangements of parts impossible by means of conventional technologies such as capillaries, machined parts, and separate electronic components.


Introduction


This article outlines the basics of hybrid structures (HS) in their current state along with the implementations as well as the implications. Hybrid structures are based on the fundamental building blocks of multi-layer circuit boards (MLCB) and metal microfluidic (MMF) structures. MMF structures are the counterpart to multi- layer circuit boards in the fluidic realm. While circuit boards allow for the precise manipulation of electrons, MMF devices make it possible to precisely manipulate solvents, or the molecules solvents are composed of. MMF devices and the related technology are already in use in applications that require high temperatures and high pressures, or both, such are aerospace equipment, high power propulsion systems and high precision analytical equipment such as chromatographs. The integration of MMF devices and circuit boards into one integrated assembly does however introduce new possibilities, such as combining multiple components into one compact, complex precise device, that have not been utilised before. This is in part due to the unique setting that an ultrahigh-performance liquid chromatograph ((U)HPLC) system provides for those technologies, e.g. the low flow rates (between 0 and 10 ml/min), the high pressure (up to 1500 bar), and the absence of temperatures above 150ºC.


Some modern (U)HPLC systems already use MMF devices for different applications such as heat exchangers, mixers, and manifolds.


Figure 1. Example of a current application for MMF devices. Conventional pump head that is equipped with an MMF heat exchanger.


Those devices are generally surrounded by conventional capillary tubing, machined parts such as pump heads, valves, and circuit boards [1, 2]. Figure 1 shows a conventional pump head that is equipped with an MMF heat exchanger. The heat exchanger is used to connect the primary and the secondary pump head via a heat transfer element to reduce the impact of thermal contraction in the secondary head, which can impact the flow rate accuracy. While the devices themselves already bring value to the current configurations by serving the use case they are designed for with minimal overhead, maximum reliability, and a high performance, they do remain islands in a


‘sea of capillaries and interfaces’. They are much like the first integrated components that were introduced into phones, radios, TVs, and other electronic equipment as more complex integrated components in a ‘sea of wires and plugs’ [3]. To fully leverage the advantages of MMF, a migration of capillaries and interfaces is required. Radios and phones only started to shrink in size and grow in performance when the functional blocks were combined into fewer main circuit boards. To improve the performance and reliability, it is necessary to reduce the failure modes and performance limiters in the system. Failure modes in (U)HPLC systems are often caused by interfaces and


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76