search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
32 Buyers’ Guide 2021 Table 1. The physiochemical properties of wide pore and ultra-wide pore FPP and SPP particles


Particle type


Competitor 400A


FPP 400Å SPP 500Å


Particle size (µm)


1.7 1.7


FPP 1000Å 1.7 2.6


SPP 1000Å 2.6


Surface area (m2


g-1 65


41 22 15 9


)


Average pore


volume (cm3


g-1 0.6


0.2 0.1


0.05 0.05


the FPP and SPP is shown on the size distribution graph Figure 4. The data obtained from this technique can also be used to calculate the mean, median and particle distribution ratio (d90/d10).


Table 1 summarises the physiochemical properties of a range of 1.7µm FPP and 2.6µm SPP synthesised with wide (400-500Å) and ultra-wide pores (1000Å) respectively. The table also lists the physical properties of a competitor brand of large pore silicas. For the efficient separation of macromolecules, it is suggested that the particle pore size for optimal chromatographic separation should be in the order of at least 10 times the effective hydrodynamic diameter of an analyte. All particles have monodispersity (d90/d10) values ≤ 1.3 indicating they are monodispersed and do not aggregate as evidence from SEM and FIB micrographs, Figures 1a, 2 and 3.


) 300


430 950 430


1200


Average pore size (Å)


%C Surface coverage (α) (µmol/ nm2


) n/d n/d


0.69 2.2 0.33 2.1 0.32 2.9 0.15 2.3


1.7


1.3 1.3 1.2 1.2


Figure 5 illustrates the pore size distribution profiles for FPP 1.7µm and SPP 2.6µm with the numerical values for FPP 1.7µm and SPP 2.6µm shown in Table 1. The two SPP 2.6µm particles (500Å and 1000Å) have the same low average pore volume of 0.05cm3


g-1 g-1 ,


while the average pore volume of the FPP 1.7µm 400Å particle (0.20 cm3


that for FPP 1.7µm 1000Å particle (0.10 cm3


g-1 ).


For the wide-pore particles (i.e. FPP 1.7µm 400Å and SPP 2.6µm 500Å) the pore volume increases to maximum pore expansion and then begin to decrease as pore size continue to increase. For ultra-wide pore particles (i.e. FPP 1.7µm 1000Å and SPP 2.6µm 1000Å), there is steady increase in pore volume with increase in pore size to maximum pore expansion. The average pore size distribution was calculated using the Kelvin equation derived from the Barrett- Joyner-Halenda (BJH) model [13].


Application evaluation for SOLASTM


FPP and EIROSHELL™ SPP columns


Figure 4. Particle size distribution curve for an ultra-wide pore 1.7µm particle.


Gradient separation of a mixture of six standard protein compounds (in eluting order: 1. ribonuclease A (14.70kDa) 80µg/ ml, 2. cytochrome C (12.33kDa) 110µg/ ml, 3. BSA (66.43kDa) 400µg/ml, 4.


) is double


Monodispersivity (d90/d10)


myoglobin (16.71kDa) 250µg/ml, 5. enolase (67.00kDa) 430µg/ml, and 6. phosphorylase B (97.20kDa) 1.18µg/ml are compared in Figure 6 for wide-pore FPP 1.7µm C4-400Å and SPP 2.6µm C4-500Å columns, plus ultra-wide pore FPP 1.7µm C4-1000Å, and SPP 2.6µm C4-1000Å columns as shown in Figure 6.


All peaks for the wide-pore FPP 1.7µm C4-400Å column (Fig. 6A) show a slightly longer retention time (Table 3a) compared to the ultra-wide FPP 1.7µm C4-1000Å column (Figure 6B & Table 3b), suggesting some restricted diffusion of these large protein molecules in the relatively smaller pore particles. The protein macromolecules ribonuclease A and cytochrome C have better separation efficiencies (based on the number of theoretical plates, NTP) on FPP 1.7µm C4-400Å than on FPP 1.7µmC4-1000Å columns (Tables 3a and 3b). This can be attributed to the larger particle surface area 41 m2


, and subsequently higher %C 0.69 of FPP 1.7µm C4-400Å compared to 22 m2


g-1 g-1


and %C 0.33 for FPP 1.7µm C4-1000Å (Table 1). FPP 1.7µm C4-1000Å shows a better efficiency for phosphorylase B compared to FPP 1.7µm C4-400Å as seen by the number of theoretical plates in Tables 3a & 3b. This is due to the restricted diffusion of the large molecular weight phosphorylase B (97.20kDa) through the relatively smaller pore size FPP 1.7µm C4-400Å compared to the ultra-wide FPP 1.7µm C4-1000Å particle.


For SPP columns, compared to SPP 2.6µm C4-500Å (Figure 8C), SPP 2.6µm C4-1000Å (Figure 6D) show higher retention times and efficiency in terms of number of theoretical plates (Tables 3c & 3d) for ribonuclease A, cytochrome C, BSA and myoglobin. This is due to the larger pore size for SPP 2.6µm C4-1000Å which causes the unrestricted diffusion of these protein macromolecules. The separation efficiency (NTP) of the protein macromolecule, enolase in both columns (Tables 3c and 3d) are close, suggesting that the diffusion restriction due to pore size does not have an adverse band broadening effect for this analyte. SPP 2.6µm C4-500Å shows a better efficiency for phosphorylase b compared to SPP 2.6µm C4-1000Å indicating an added benefit of SPP 2.6µm C4-500Å with a larger surface area (15m2 1000Å (9m2


g-1 g-1


) compared to SPP 2.6µm C4- ) as seen in Table 1.


Figure 5. BJH pore size distribution curves. It should be noted that the pore volume decreases as pore size increases after pore expansion.


Effect of Large Pore Monodense Particles on Separation of Biomolecules


Figure 7 below illustrates the resolving


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76