50 Buyers’ Guide 2021
pragmatic majority of lab users these words strike fear into their being as, these terms can often be associated with a large activation energy and a drop off in performance. Thus, for the pragmatic majority terms such as ‘reliable’, ‘robust’, ‘industry standard’ are words that they seek comfort in as these technologies will not cause a potential drop off in performance. The approach to the marketing and selling of technologies to these two different classes of laboratory user has to be very different to be effective.
The classical approach to sales has always been to try to sell as many items as possible, as quickly as possible, however with disruptive technologies this is not the always the correct approach, since it will ultimately end up with many disappointed customers and the new instrumentation gathering dust on the back of a shelf somewhere. Initially, as the product is launched, there will be substantial interest from the visionaries and these population group will be looking to prove that the concept can be applied within the wider laboratory. The potential sales growth can be quite fast in these early days, which can often lead to organisations over-estimating the projected revenue figures, since ultimately the technology has to be bought by the pragmatic majority and the approach to selling has to be very different, as was mentioned previously.
In order to move from a marketing approach that is successful with the visionaries to one that will drive revenue growth into the early and late majority market, the approach has to change. Instead of selling an exciting new technology to as many people as possible, the vendor has to look at the whole package that is being sold. Thus, it is not just the technology, but now the support teams, the packing, the way the technology interfaces with other technology has substantially more significance. Figure 2 gives an overview of what the whole product or solution should be. The terms solution becomes readily applied, as this suggests that the laboratory user has a significant problem, and the solution can resolve this. The other aspect that needs to be carefully considered is who to sell and market to, and so a very focussed approach is made to the selling the solution, with the efforts concentrating on a very few customers to ensure that a beach head is obtained within the early majority. Identifying the initial customers is critical. As already stated the pragmatic majority of laboratory users are not keen on new exciting technology and instead prefer to use tried and trusted technology which has been shown to work time after time. So, the vendor marketing teams now need to focus on becoming the market leader in a very small market, as this will allow other potential customers to take up the technology with limited risk. This requires discipline, if too many customers are targeted at this point, there will not be the support structure in place and any developments of the final solution may get diluted with too many inputs on what needs to be changed. Focussing on a few key customers means that a defined solution for a particular market can be made and crucially the technology will be seen as being the leading standard in a particular market. The size of the market can be very small, even to the point of one laboratory in one organisation. The key to success is for the vendor to dominate that market space.
Figure 2: Understanding that a new core technology or concept is not everything that is being sold is an important concept. This figure shows some of the other considerations to ensure that new technology is sold successfully.
Once the vendor has taken control of one market, then the vendor can look to break into other markets, using a similar approach. This typically results in a very fast growth of sales as the new markets take up the safe reliable solution very readily. Eventually this will result with the new technology becoming the mainstream technology, and within the chromatography environment there are quite a few examples of new technologies that have been introduced very successfully using a similar approach to this, including UHPLC and solid core silica column packing materials. There are, unfortunately, many technologies where the implementation has not been so successful.
The discussion so far has looked at the perspective from the vendor, however it is also important that the separation scientist’s perspective is also considered within this. At the start of the article the terminology disruptive was employed and it is important that an understanding of what disruptive means in the context of a chromatographer, since it is feasible that a disruptive technology for one organisation may no longer been seen as that by another organisation. This is another area where the end user has to be aware of the impact that new technology will have. Thus, if the product requires a change in the behaviour, skillset or a process within the laboratory then it can be classified as disruptive. If one or more of these changes is very large then the technology can be seen to be highly disruptive.
For a laboratory user the implementation of new technology can be very daunting. There will have been some form of investment by the organisation into the new technology and the organisation will be looking to get that investment back in some manner, which will put a reasonable amount of pressure on the laboratory scientists to deliver success. How to deal with the change as the new technology, or indeed a new process is introduced, is very important as is understanding the different stages that an individual may go through.
Elisabeth Kübler-Ross was a Swiss-American psychiatrist, a pioneer in near-death studies, and author of the internationally best-selling book, On Death and Dying (1969), where she first discussed her theory of the five stages of grief, also known as the ‘Kübler-Ross model’ [2]. This same model has been readily applied to change management. Some critics state that it is too simplistic, however the basic concepts are very useful to giving an insight into what to expect. Figure 3 shows what the model looks like.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76