search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
10 WATER / WASTEWATER


product to produce paper. These paper-making processes involve wood preparation, pulp washing, and bleaching which releases a significant volume of effluent containing high organic load, COD, Biological Oxygen Demand (BOD), and colorant. The paper industry wastewater is a diverse mixture of more than 250 organic and 700 inorganic chemicals. Moreover, the bleaching of pulp mainly involves a reaction between lignin and chorine/ chlorine-based chemical highly toxic chemicals that are resistant to biodegradation and considered as prime contaminates by the United States Environmental Protection Agency (USEPA). Researchers investigated an EC process using a stainless-steel electrode to treat pulp and paper industry effluent. The result showed maximum removal efficiency of COD (82%) and color (99%) at the pH of 7, current density of 24.80 mA/cm2 operating time, and electrolytes dose of 1 g/L [5].


, 40 min


Recent growth in the pharmaceutical industry led to an increase in pharmaceutical effluents which generally contain a high concentration of antibiotics chemicals, organics, and solid contents. Some pharmaceuticals traces have already been found in water raising concerns about the potential risks to the environmental ecosystem and humans. These drugs tend to make their way into waters mainly through excretion of active medicines directly from patients and resulting from inadequate elimination of those drugs from our wastewater during wastewater treatment. A study investigated the removal of active pharmaceutical ingredients by combined electro- assisted coagulation-photocatalytic oxidation. At 10V and 24V for aluminum and iron electrode, TOC was found to reduce by 14% and 22% respectively. By EC-Fenton’s reaction with an iron electrode, 43% TOC removal was observed, with a reduction of cefixime to 0.01mg/l [6]. A similar evaluation of EC for the removal of veterinary antibiotics such as ampicillin, doxycycline, sulfathiazole, and tylosin from wastewater. The results found the removal of 3.6% ampicillin, 99% doxycycline, 3.3% sulfathiazole, and 3.1% tylosin. Doxycycline was the only antibiotic effectively removed from wastewater during electrocoagulation. The best result for the removal of turbidity was 84% and COD was 68% [7].


Another achievement for the EC process was to demonstrate the significant removal of contaminants from oil industry wastewaters. The compositions and characteristics of wastewaters from vegetable oil refinery vary depending on the type of crop used to produce oil. A palm bunch consists of 20% oil, 6% kernel, 15% fibers, 7% shells, 20% bunches, and wastewater. The palm oil mill effluent (POME) is black in color and contains grease, plant nutrients, TSS, BOD, and COD. A study evaluated the optimization of the electrocoagulation for treating POME using an iron electrode. The results showed COD, TSS, and TDS removal of 93.12%, 97.70%, and 41.06% respectively, in 37 minutes with 20 volts, and no NaCl concentration [8]. Furthermore, another research showed effectiveness in the decolorization of Palm Oil Mill Effluent (POME) with the EC process using an aluminum electrode. Where the maximum removal of 89% was observed at 1.67 g/L NaCl and 4 plate electrode configurations with a voltage of 15V [9]. Some researchers investigated the removal of an organic pollutant from edible oil process wastewater using electrocoagulation with iron and aluminum electrodes. The study achieved more than 80% removal of organic carbon and nearly 100% removal of TSS. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater. Moreover, Al electrodes were found to yield better removal at a lesser time compared to that of Fe electrodes [10].


The food industry is another major source of wastewater owing to the consumption of large amount of water per unit product. The


Author Contact Details


Dr. Raj Shah*, Koehler Instrument Company • Holtsvile, NY 11742 USA • Email: rshah@koehlerinstrument.com • Web: www.koehlerinstrument.com * Corresponding author


general characteristics of wastewater from this industry is being highly biodegradable and non-toxic with high suspended solids, COD, and BOD. One segment in the food industry is the poultry industry which involves water-intensive activity with estimated water consumption of 15 - 20 L/bird over the whole production line and an equally large amount of effluents generated with very high pollutant loads. Researchers studied the effectiveness of the electrocoagulation and electroflotation treatment of poultry slaughterhouse wastewater using aluminum and graphite electrode. The best results were obtained at 4/5 and 3/5 EC-to-EF ratios for the removal of COD (76-85%), color (93-99%), and turbidity (95-99%) [11].


Recent growth in plastic usage has led to the presence of plastics in waste streams on land and water. Moreover, microplastics constitute 0.1- 1.5% of overall plastic waste. Plastic particles of less than 5 mm diameter are termed as microplastics and can be classified as either primary or secondary. Primary microplastics comes from the personal care and cosmetic products (PCCPs), such as facial scrubs, where around 93% of all microplastics used in PCCPs are polyethylene-derived beads. These Primary microplastic particles commonly pass traditional through wastewater treatment plants (WWTPs) untreated and end up in oceans. Secondary microplastics are produced when larger plastic breaks apart due to a combination of UV degradation, mechanical stresses, and biological processes. The lack of tertiary treatment in traditional WWTPs leads to escaped microbeads from effluent streams ending up in waters. However, scientists have found promising results using EC for the removal of microbeads from wastewater using an aluminum electrode. The maximum removal efficiency of 99.24% from the study was found at a pH of 7.5, NaCl concentration of 2 g/L, and the current density of 11 A/m2


[12].


Given the substantial amount of studies on electrocoagulation, they appear to concentrate on laboratory-scale tests that show the technology’s efficacy in the elimination of particular contaminants. Future research should focus on, integration of electrocoagulation with current technology, improving cell-design, cost analysis, scale-up, and industrial applications, which are the main factors that pose significant challenges to the effectiveness of electrocoagulation as a standalone process.


References


1. An, C., et al., Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. Science of The Total Environment, 2017. 579: p. 537-556.


2. Deveci, E.Ü., et al., Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective. Process Biochemistry, 2019. 84: p. 124-133.


3. Sen, S., D.D. Pal, and A. Prajapati. Electrocoagulation Treatment of Textile Dyeing Effluent Using Aluminium Electrodes. in Proceedings of Recent Advances in Interdisciplinary Trends in Engineering & Applications (RAITEA) 2019.


4. Dimoglo, A., et al., Electrocoagulation/electroflotation as a combined process for the laundry wastewater purification and reuse. Journal of Water Process Engineering, 2019. 31: p. 100877.


5. Kumar, D. and C. Sharma, Remediation of Pulp and Paper Industry Effluent Using Electrocoagulation Process. Journal of Water Resource and Protection, 2019. 11: p. 296-310.


6. Lalwani, J., et al., Sequential treatment of crude drug effluent for the elimination of API by combined electro-assisted coagulation-photocatalytic oxidation. Journal of Water Process Engineering, 2019. 28: p. 195-202.


7. Baran, W., et al., Removal of veterinary antibiotics from wastewater by electrocoagulation. Chemosphere, 2018. 194: p. 381-389.


8. Lubis, M., et al., The Optimization of the Electrocoagulation of Palm Oil Mill Effluent with a Box-Behnken Design. International Journal of Technology, 2019. 10: p. 137.


9. Ibrahim, S., et al., Application of electrocoagulation process for decolourisation of palm oil mill effluent (POME). Nature Environment and Pollution Technology, 2018. 17: p. 1267-1271.


10. Sharma, S., et al., Organic pollutant removal from edible oil process wastewater using electrocoagulation. IOP Conference Series: Earth and Environmental Science, 2018. 142: p. 012079.


11. Paulista, L.O., et al., Efficiency analysis of the electrocoagulation and electroflotation treatment of poultry slaughterhouse wastewater using aluminum and graphite anodes. Environmental Science and Pollution Research, 2018. 25(20): p. 19790-19800.


12. Perren, W., A. Wojtasik, and Q. Cai, Removal of Microbeads from Wastewater Using Electrocoagulation. ACS Omega, 2018. 3(3): p. 3357-3364.


About the Authors


Mr. Shrish Patel received his bachelor’s degree from the Polymer and Surface Engineering Department at the Institute of Chemical Technology, India, and is currently finishing his Ph.D. at State University of New York, Stony Brook, NY.


His primary research focuses on sustainable energy and environmental research. His experience in the environmental field resulted in a recent award to attend wastewater treatment summer school at the Norwegian University of Life Sciences (NMBU). Patel is very passionate about translating his sustainable energy research into a commercial environment and recently received multiple awards for his patent-pending self-cleaning technology.


Dr. Raj Shah is a Director at Koehler Instrument Company in New York, where he has worked for the last 25 years. He is an elected Fellow by his peers at IChemE, CMI, STLE, AIC, NLGI, INSTMC, The Energy Institute and The Royal Society of Chemistry An ASTM Eagle award recipient, Dr. Shah recently coedited the bestseller, “Fuels and Lubricants handbook”, details of which are available at https://www. astm.org/DIGITAL_LIBRARY/MNL/SOURCE_PAGES/MNL37- 2ND_foreword.pdf


A Ph.D in Chemical Engineering from The Penn State University and a Fellow from The Chartered Management Institute, London, Dr. Shah is also a Chartered Scientist with the Science Council, a Chartered Petroleum Engineer with the Energy Institute and a Chartered Engineer with the Engineering council, UK. An adjunct professor at the Dept. of Material Science and Chemical Engineering at State University of New York, Stony Brook, Raj has been active I the petroleum field for 3 decades.


More information on Raj can be found at https://www.petro- online.com/news/fuel-for-thought/13/koehler-instrument- company/dr-raj-shah-director-at-koehler-instrument- company-conferred-with-multifarious-accolades/53404


Shrish Patel, Department of Material Science and Chemical Engineering • Stony Brook University, Stony Brook, NY 11794, USA


AET ANNUAL BUYERS’ GUIDE 2021 WWW.ENVIROTECH-ONLINE.COM


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72