Noise
Many health hazards are invisible in the workplace but at least noise can be heard! Nothing highlights the effects of the latency of some long-term health effects more than noise, where Noise Induced Hearing Loss (NIHL) becoming degenerative later in life, or not so later depending on the severity! Noise measurement is often perceived of straight forward, surely everyone knows what a decibel is? The reality is there are a plethora of
parameters and options when monitoring.
Dosimeters can be started at the beginning of a shift and should be used until the end of the day, when data can be uploaded onto a computer, detailing the history of the noise exposure, highlighting where high exposures occur throughout the day.
If
the dosimeter is placed on an employee who then makes a diary of times and jobs performed throughout the day, the employer will be able to instantly see the operations that require more effective noise controls.
Figure 3 - A sound level meter for workplace noise
Modern instruments for workplace noise tend to have setups that are defined and named to local workplace legislation, this means that you can pick a setup and it will automatically measure all the required parameters with the correct settings, removing the possibility of measuring incorrect parameters.
A sound level meter (Figure 3) is a hand-held device, enabling measurements to be taken at the ear (within 10-15cm) with the instrument pointing at the noise source. This process must be repeated for both ears, for all duties employees perform, making it possible to calculate an accurate record of daily exposure. Settings on these meters can be adjusted according to the type of noise being assessed. Monitors should be compatible to the international IEC 61672 Class 2 standard ensuring correct measurements are made.
When using a sound level meter, measurements must be started at the beginning of a task, representing workers’ actual exposure. If workers are likely to be exposed to high levels of impulsive noise, emitted from heavy pressing operations or sheet metal working, peak noises must be measured for accurate results and compared to peak action levels.
When conducting noise surveys, sound level meters are the preferred supporting device, as the operator is present, ensuring that the noises measured are of good quality. A representative measurement is made for each job function, with the exposure time for each, ensuring an 8 hour exposure can be calculated as a result.
Dosimeters (Figure 4) are small devices worn by workers, measuring personal exposure. These are small, shoulder worn devices.
It is best to use dosimeters for individuals with a complex work pattern and varying noise level exposure, or when certain tasks make it difficult to monitor with a sound level meter, such as fork lift truck driving. It is important to remember that noise dosimeter measurements are open to spurious results from employees, especially when first used. So, high exposures should be checked to see if they are a legitimate part of the workers exposure. Modern noise dosimeters can record the actual audio. This would allow the sound to be played back to determine what the exposure was from, such as a particular machine, or indeed that it was spurious.
A noise dosimeter.
Ensuring regulations are met, employers must purchase dosimeters that are compliant with the IEC 61252 standard.
Vibration
It is estimated nearly two million people in the UK are at risk of developing Hand Arm Vibration, commonly referred to as HAV syndrome. Exposure to vibration in the workplace can lead to serious consequences, causing long-term injury or impairment. HAV is transmitted into workers’ hands and arms from the use of hand-held power tools and hand guided equipment. Whole body vibration (WBV) from, for example, plant vehicles moving over rough ground, causes other issues such as damage to vertebrae.
Different jobs emit different levels of vibration; cutting brick will create different levels to cutting wood. Irrespective of the task, employers must adhere to the government standards of safety that stipulates the daily exposure limit for vibration (ELV) is 5 m/s2
Figure 5 - A hand arm vibration meter .
This value is the maximum level of vibration an employee can be exposed to on any single day and above which employees should not continue until steps have been taken to reduce exposure.
Employers must also focus on the daily exposure value (EAV), which should not exceed 2.5 m/s2
. Employers should take the
necessary control measures, ensuring exposure is reduced below this value as far as is reasonably practicable. High powered tools are now designed with estimated vibration levels and employers should use this as a guide, indicating how long workers can operate these for. Measuring the vibration levels with a HAV monitor (Figure 5) extends this, actually measuring exposure. This is essential, measuring the vibration levels of tools not just when the tools are new, but as their vibration levels deteriorate with time.
Figure 4 - A noise dosimeter worn on the shoulder
Monitoring gives employers the knowledge that tools and machinery continue to be safe for use after purchase, helping to ensure worker productivity and safety. When manufactured, all monitoring devices should adhere to the standard ISO8041. The data monitoring provides could shape further education campaigns, highlighting areas where further training is required, ensuring employees are completely aware of the issues.
Conclusion
A 2004 study conducted by the HSE found employers considered health and safety to be a generic phrase where individuals were unable to distinguish between the different types of risk concerned. We are much further forward then this now, and the remits of a health and safety professional are wider than ever before. But as the costs of occupational ill Health are increasingly understood, then monitoring for these health hazards at work as a means to reduce risk and control exposure. Understanding the options available for monitoring and the best use of the technology to ensure data is relevant and accurate are key to quantifying risk with the end goal of employees remaining healthy through their working life and beyond.
References
1:
http://www.healthandsafetyevents.co.uk/res/org0011/ s570dbf518f26445.pdf
2:
https://www.ice.org.uk/ICEDevelopmentWebPortal/ media/Documents/Disciplines%20and%20Resources/ Briefing%20Sheet/Costs-of-occupational-ill-health-in- constructionformattedFINAL.pdf
Focus on Personal Safety at Work 27 Monitoring for other health hazards
There are many other monitoring types of monitoring technology to measure exposure in the workplace, which includes:
• Heat and cold stress: Monitors, which can measure temperature indices and when compared to work rate and other factors determine how long it is safe to work in a specific environment.
• Radiation: this can fall into two forms, ionising and non- ionising. Sources of ionising radiation, such as from radioactive decay will be controlled if the occur in a workplace and this is of course a specialist field where measurement of radiation dose is critical. Non-ionising radiation sources such as Ultraviolet from sources such as welding or outdoor work, are much more prevalent. Various instruments to measure these Electro Magnetic Fields (EMF) monitoring instruments are available but vary considerably depending on wavelength of radiation they are being used for. Legislation has been published to control exposure to electromagnetic fields with the European Directive (2013/35/EU).
There are other ways of course other forms of monitoring from routes of exposure such as dermal (through the skin), via indigestion or from bio aerosols (e.g. bacteria) for which it is possible to monitor, and of course it may well be necessary to in order to control exposure.
Tim Turney, Global Marketing Manager at Casella Tim Turney is Global Marketing Manager at Casella and graduated as an engineer from Queen Mary and Westfield in London. Since starting at Casella in 1998, Tim has been involved in the acoustics and air sampling industry, specialising in measurement and instrumentation technologies.
Author Contact Details Tim Turney, Global Marketing Manager, Casella • Regent House, Wolseley Road, Kempston, Bedfordshire, MK42 7JY, UK • Tel +44 (0)1234 847799 • Email:
helpdesk.casellasolutions.com •
www.casellasolutions.com
www.envirotech-online.com IET September / October 2019
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64