HOW MONITORING DATA CAN BE USED TO REDUCE ILL HEALTH
The “health” element of health and safety has been, for the most part, the silent partner of health and safety. Yet in the UK in 2017/18*, it was estimated that there were 13,000 deaths linked to past exposures to hazardous substances at work, compared to the 144 people who died as a result of a physical accident. In addition, it is estimated that there were 1.4 million work related ill health cases, with the cost to industry well into the billions.
These statistics demonstrate that work-related ill health is a serious issue in the UK, and worryingly these statistics show no sign of slowing down. Ill health issues such as cancers and chronic lung diseases account for most fatalities in the UK and musculoskeletal disorders and stress-related illnesses are the biggest fi nancial burden on the UK economy.
Health risks are challenging to manage because health is NOT like safety; not only the hazards themselves but also the way industry understands and manages risk. To achieve real, lasting change, this needs to be addressed.
Part of the risk assessment process involves an element of risk quantifi cation; determining the level of exposure is often a major step in identifying if employees are at risk of contracting ill health. Data obtained by employee exposure can also be used to identify possible sources of ill health, identify patterns of exposure, emphasise the need for adequate controls or to assess whether the controls implemented bring the risk down to an acceptable level.
The Plan, Do, Check, Act (PDCA) or Demming Cycle, is an approach to health and safety management recommended by the HSE; it achieves a balance between systems and behavioural aspects of management. Many management systems including ISO 45001 rely on the use of the Demming Cycle as seen in the diagram above. Operator assessment and monitoring falls under “Check” which includes the requirement to ensure that controls are adequate.
Key to the success of any monitoring survey is the observation of the working being carried out, the accurate collection of data and the competency of the people involved. This process can be split into pre-survey, monitoring survey and then an analysis and interpretation of the results.
The pre-survey should be undertaken well before the monitoring – this is when you are considering your strategy or if ill health is believed to be attributable to the inhalation of hazardous substances, excessive noise or vibration exposure. The pre-survey is usually carried out on site, with people who are familiar with the work and the processes employed, so that the correct strategy can be formed.
The monitoring survey is usually the easiest part of the process, providing that the fi ndings from the pre-survey are followed. Observations from the survey are important to fully understand what tasks the operative has carried out, whether the tasks are fully representative of their normal shift work, the number of breaks they have, whether there is any job rotation in place etc. Following the sampling, if applicable the data should be analysed by a lab and the results compared to the relevant exposure limit or standard.
Three common survey types carried out to assess ill health in the workplace are:
Air monitoring
Air monitoring is usually carried out via active sampling, with the operative wearing a pump calibrated to a specifi c fl ow rate and connected to specifi c sampling media. For most dusts, this is calibrated to 2 litres per minute but for contaminants such as solvents the fl ow rate can be as low as 100ml per minute.
The sampling method is standardised and the methodology must be followed to reduce sampling error. The HSE publish a variety of Methods for Determination of Hazardous Substances (MDHS) for various contaminants if one is not available, approved international sampling methodologies are used.
Passive sampling can also be carried out for some gases/ vapours. Diffusion monitors are simple and easy to use and don’t require the use of sampling pumps, tubing, batteries or air fl ow calibration. They are lightweight and can be simply clipped on to the collar of the worker for personal sampling (TWA or STEL) or can be used for area monitoring providing there is suffi cient airfl ow. Some disadvantages are that they cannot sample low vapour pressure organics such as glutaraldehyde and reactive compounds such as phenols and aldehydes. Diffusion badges using charcoal suffer from the same moisture and recovery issues associated with active sampling tubes. Additionally, with some diffusive samplers (depending on design) inaccuracies can occur at wind speeds >2.5 m/s.
www.envirotech-online.com IET September / October 2019
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64