Gas Detection 11
across the sensor’s inlet. If the inlet is blocked with a material, such as ice, the difference in the sound is detected and the unit is put into fault. When the obstruction is removed, the sensor detects the clearance and returns to normal operation (Fig 3).
Challenged by tight plant equipment layouts, gas detectors are often placed in difficult to reach high locations or crowded equipment areas near piping, valves and other installed equipment where gas leaks can potentially occur. Plant technicians can now securely connect wirelessly to these gas detectors from up to 75 feet (23 meters) away using their Bluetooth enabled smartphone or tablet to access safety apps. The real-time availability of this data helps workers rapidly set-up, operate and maintain gas detectors for better efficiency and use of their time.
Enhanced electrochemical sensor packaging now makes it possible to connect two gas detection sensor inputs into one transmitter, which reduces the cost of wiring, conduit and installation time to make safety even more affordable. All of these innovations are leading to lower routine maintenance requirements and a higher level of safety.
Ultrasonic gas leak detection
In outdoor industrial facilities, conventional gas detectors have to be installed so the leaking gas will most likely reach the detector. If there is just a small amount of wind, the gas can be carried away from the gas detector. A dangerous gas leak can go undetected for a very long time under these conditions. Windblown gas clouds also can be a source of false alarms when they reach detectors that are some distance away from the location of the actual gas leak
Ultrasonic Gas Leak Detectors (UGLDs), in comparison, are a non-physical contact sensing technology that is nearly impervious to windy conditions (Fig 4). UGLD sensors “listen” for a specific acoustic noise signature from a leaking gas source and issue an alarm when leaking gases are detected from pressurized pipes or tanks. UGLDs react instantly when the leak starts so that the plant safety system can adjust operations to reduce the flow of the gas within a fast response time--essential in all effective safety systems.
Laser-based gas detection technology (ELDS)
The gas sensing technology behind ELDS sensing is an open-path non-contacting method to detect specific toxic or flammable gases. In the event of a gas leak, the sensor’s laser optical technology recognizes and analyzes a gas’s specific harmonic fingerprint.
Fig 2. Electrochemical Cell Gas Detectors
Fig 5. ELDS Gas Detectors
During operation some of the detector’s laser light is reflected continuously through a sample of the target gas in a hermetically- sealed reference cell. This design allows the laser to remain locked on the selected target gas’s unique wavelength. The detector’s harmonic fingerprint technology (Fig 5) helps enable precise gas recognition, eliminating the potential for false alarms, even during adverse environmental conditions.
False alarms caused by interference gases, which are experienced with other detection technologies, are no longer a problem. Unlike electrochemical cells, ELDS sensors are also immune to sensor poisoning and interferent gases, due to their gas specific harmonic fingerprint detection method.
ELDS detectors are designed with Class 1 eye safe lasers that penetrate thick fog, heavy rain and snow. With their automated diagnostic safety integrity self-check, there is no need for the typical sensor gas checks and recalibrations requiring field technician time.
Portable Area Monitoring Technologies
While fixed gas detection is essential for 24/7 monitoring of many critical petrochemical production, processing and storage areas, there are other areas that pose a hazard only when employees are present. In these locations, portable area gas monitors are a more practical solution to help protect employees performing a variety of maintenance and installation tasks. These area monitors can be tied into the personal gas detectors workers wear to provide a larger network of safety so if a leak occurs within the area being monitored, workers in that zone will be alerted via their personal detector of the hazard and take appropriate action.
The next generation of area gas monitors (Fig 6) has been designed to operate with the simplicity of a smart home device. Employees can set up a cloud-based area monitoring network through a highly intelligent, intuitive process and be ready-to-go
right out of the box. Plant safety teams can then monitor multiple locations with cloud-based grid mobile apps designed to replace complex instructions, excessive scrolling and confusing menu selections.
Portable local or remote area monitoring with rapid setup and instant feedback gives plant safety teams the confidence they need to know that their workers and job site are safer. They monitor multiple combustible and toxic gases with the flexibility to change to different gases depending on plant or application or maintenance need. Long-life batteries with easy to read indicators and remote diagnostics offer continuous protection for up to sixty days.
The flexible design of area monitors and networks of area monitors simplifies routine maintenance tasks, such as work along a fence line, in confined spaces or any high-risk area where a gas leak might occur. When the area monitor does detect a potential gas hazard, alarms and evacuations will be displayed on-site to workers and to the person overseeing the network.
Fig 6. Portable Area Monitors & Networks Conclusions Fig 3. Acoustic Diffusion Supervision
Author Contact Details Richard Balt, Product Line Manager, MSA Safety • 1000 Cranberry Woods Dr, Cranberry Twp, PA 16066, USA • Tel: +1-724-776-8600 • Email:
Richard.balt@
MSAsafety.com • Web:
MSAsafety.com
The future of gas safety is a layered sensing strategy that takes advantages of multiple sensor technologies, which are evolving and being optimized with new materials and construction techniques. In addition to better sensor and battery performance, sophisticated communications and cloud-based networks make safety systems more reliable and easier to operate with confidence. The safety industry, individually as companies and together collectively, is dedicated to reducing operational hazards in petrochemical plant environments to protect people, equipment and plants.
www.envirotech-online.com IET September / October 2019
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64