Radiation Damage and Nanofabrication
and lower energies, the displacement is predominantly electron- beam sputtering of surface atoms. Both processes are included in Table 2, which illustrates the limitation on writing speed that results from the low probability of high-angle elastic scattering.
in electrically conducting materials. For thicker samples and high incident energies, knock-on means displacement of lattice atoms to interstitial sites. But for 2D materials (for example, MoS2
, graphene)
Conclusions Radiation damage is a curse for electron microscopy of
beam-sensitive specimens but a blessing for electron-beam fab- rication, which could result in devices far smaller than those possible with UV light. Progress in our understanding has been slow, but time-dependent quantum calculations and further advances in experimental technique should lead to improved control over the damage process.
References [1] RF Egerton, Micron 119 (2019) doi: 10.1016/j. micron.2019.01.005.
[2] B Kuei and ED Gomez, Nat Comm (2021) doi:10.1038/ s41467-020-20363-1.
[3] R Henderson and CJ Russo, Microsc Microanal 25 (Suppl. 2) (2019) doi:10.1017/S1431927619000758.
[4] AV Krasheninnikov and F Banhart, Nat Mater 6 (2007) doi: 10.1038/nmat1996.
[5] S Kretschmer et al., Nano Lett 20 (2020) doi: 10.1021/acs. nanolett.0c00670.
[6] A Stevens et al., Appl Phys Lett 112 (2018)
doi.org/10.1063/ 1.5016192.
[7] EJ VandenBussche and DJ Flannigan, Nano Lett 19 (2019)
doi.org/10.1021/acs.nanolett.9b03074.
[8] C Jing et al., Microsc Microanal 26 (Suppl. 2) (2020) doi:10.1017/S1431927620018589.
[9] RF Egerton, Adv Struct Chem Imaging 1 (2015) doi. org/10.1186/s40679-014-0001-3.
[10] JCH Spence, Struct Dyn 4 (2017)
doi.org/10.1063/1.4984606. [11] Z Cai et al., Chem Sci 10 (2019)
doi.org/10.1039/C9SC04100A.
[12] N Jiang, Rep Prog Phys 79 (2016)
doi.org/10.1088/0034- 4885/79/1/016501.
[13] RF Egerton and H Qian, Microsc Microanal 25 (Suppl. 2) (2019) doi:10.1017/S1431927619005695.
[14] RM Glaeser and KH Downing, Microsc Microanal 10 (2004) doi:10.1017/S1431927604040668.
[15] RM Glaeser, Meth Enzymol 579 (2016)
doi.org/10.1016/ bs.mie.2016.04.010.
[16] G Algara-Siller et al., Appl Phys Lett 103 (2013) doi. org/10.1063/1.4830036.
[17] M Warkentin et al., J Synchrotron Rad 20(2013) doi. org/10.1107/S0909049512048303.
[18] F Krumeich et al., Micron 49 (2013)
doi.org/10.1016/j. micron.2013.03.006.
[19] R Close et al., Ultramicroscopy 159 (2015)
doi.org/10.1016/j. ultramic.2015.09.002.
[20] I Lazić et al., Ultramicroscopy 160 (2016)
doi.org/10.1016/j. ultramic.2015.10.011.
[21] DN Johnstone et al., Microsc Microanal 25 (Suppl. 2) (2019) doi:10.1017/S1431927619009462.
[22] D Ren et al., Ultramicroscopy 208 (2020) doi: 10.1016/j. ultramic.2019.112860.
2021 May •
www.microscopy-today.com 59
[23] CDW Wilkinson and SP Beaumont, “Electron Beam Nanolithography” in Te Physics and Fabrication of Micro- structures and Microdevices, MJ Kelly and C Weisbuch, eds. (1986) Springer.
doi.org/10.1007/978-3-642-71446-7_3.
[24] VR Manfrinato et al., Nano Lett 17 (2017)
doi.org/10.1021/ acs.nanolett.7b00514.
[25] PA Crozier, J Vac Sci Technol B 26 (2008) https://doi. org/10.1116/1.2834560.
[26] AN Broers et al., Microelectronic Eng 32 (1996) doi. org/10.1016/0167-9317(95)00368-1.
[27] A Muray et al., J Vac Sci Technol B 3 (1985) https://doi. org/10.1116/1.583265.
[28] IG Salisbury et al., Appl Phys Lett 45 (1984) https://doi. org/10.1063/1.95115.
[29] JL Hollenbeck and RC Buchanan, J Mater Res 5 (1990)
https://doi.org/10.1557/JMR.1990.1058.
[30] CJ Humphreys et al., Scanning Microsc Suppl 4 (1990) 185–92. [31] J Cazaux, Ultramicroscopy 60 (1995)
doi.org/10.1016/0304- 3991(95)00077-1.
[32] B Wu and AR Neureuther, J Vac Sci Technol B 19 (2001)
doi.org/10.1116/1.1421548.
[33] RF Egerton, Microscopy 67 (2018)
doi.org/10.1093/jmicro/ dfx089.
[34] RF Egerton and M Malac, Microsc Microanal 10 (Suppl. 2) (2004)
https://doi.org/10.1017/S1431927604880541.
[35] F Banhart, Rep Prog Phys 62 (1999)
https://doi.org/10.1088/ 0034-4885/62/8/201.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92