search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Radiation Damage and Nanofabrication


and lower energies, the displacement is predominantly electron- beam sputtering of surface atoms. Both processes are included in Table 2, which illustrates the limitation on writing speed that results from the low probability of high-angle elastic scattering.


in electrically conducting materials. For thicker samples and high incident energies, knock-on means displacement of lattice atoms to interstitial sites. But for 2D materials (for example, MoS2


, graphene)


Conclusions Radiation damage is a curse for electron microscopy of


beam-sensitive specimens but a blessing for electron-beam fab- rication, which could result in devices far smaller than those possible with UV light. Progress in our understanding has been slow, but time-dependent quantum calculations and further advances in experimental technique should lead to improved control over the damage process.


References [1] RF Egerton, Micron 119 (2019) doi: 10.1016/j. micron.2019.01.005.


[2] B Kuei and ED Gomez, Nat Comm (2021) doi:10.1038/ s41467-020-20363-1.


[3] R Henderson and CJ Russo, Microsc Microanal 25 (Suppl. 2) (2019) doi:10.1017/S1431927619000758.


[4] AV Krasheninnikov and F Banhart, Nat Mater 6 (2007) doi: 10.1038/nmat1996.


[5] S Kretschmer et al., Nano Lett 20 (2020) doi: 10.1021/acs. nanolett.0c00670.


[6] A Stevens et al., Appl Phys Lett 112 (2018) doi.org/10.1063/ 1.5016192.


[7] EJ VandenBussche and DJ Flannigan, Nano Lett 19 (2019) doi.org/10.1021/acs.nanolett.9b03074.


[8] C Jing et al., Microsc Microanal 26 (Suppl. 2) (2020) doi:10.1017/S1431927620018589.


[9] RF Egerton, Adv Struct Chem Imaging 1 (2015) doi. org/10.1186/s40679-014-0001-3.


[10] JCH Spence, Struct Dyn 4 (2017) doi.org/10.1063/1.4984606. [11] Z Cai et al., Chem Sci 10 (2019) doi.org/10.1039/C9SC04100A.


[12] N Jiang, Rep Prog Phys 79 (2016) doi.org/10.1088/0034- 4885/79/1/016501.


[13] RF Egerton and H Qian, Microsc Microanal 25 (Suppl. 2) (2019) doi:10.1017/S1431927619005695.


[14] RM Glaeser and KH Downing, Microsc Microanal 10 (2004) doi:10.1017/S1431927604040668.


[15] RM Glaeser, Meth Enzymol 579 (2016) doi.org/10.1016/ bs.mie.2016.04.010.


[16] G Algara-Siller et al., Appl Phys Lett 103 (2013) doi. org/10.1063/1.4830036.


[17] M Warkentin et al., J Synchrotron Rad 20(2013) doi. org/10.1107/S0909049512048303.


[18] F Krumeich et al., Micron 49 (2013) doi.org/10.1016/j. micron.2013.03.006.


[19] R Close et al., Ultramicroscopy 159 (2015) doi.org/10.1016/j. ultramic.2015.09.002.


[20] I Lazić et al., Ultramicroscopy 160 (2016) doi.org/10.1016/j. ultramic.2015.10.011.


[21] DN Johnstone et al., Microsc Microanal 25 (Suppl. 2) (2019) doi:10.1017/S1431927619009462.


[22] D Ren et al., Ultramicroscopy 208 (2020) doi: 10.1016/j. ultramic.2019.112860.


2021 May • www.microscopy-today.com 59


[23] CDW Wilkinson and SP Beaumont, “Electron Beam Nanolithography” in Te Physics and Fabrication of Micro- structures and Microdevices, MJ Kelly and C Weisbuch, eds. (1986) Springer. doi.org/10.1007/978-3-642-71446-7_3.


[24] VR Manfrinato et al., Nano Lett 17 (2017) doi.org/10.1021/ acs.nanolett.7b00514.


[25] PA Crozier, J Vac Sci Technol B 26 (2008) https://doi. org/10.1116/1.2834560.


[26] AN Broers et al., Microelectronic Eng 32 (1996) doi. org/10.1016/0167-9317(95)00368-1.


[27] A Muray et al., J Vac Sci Technol B 3 (1985) https://doi. org/10.1116/1.583265.


[28] IG Salisbury et al., Appl Phys Lett 45 (1984) https://doi. org/10.1063/1.95115.


[29] JL Hollenbeck and RC Buchanan, J Mater Res 5 (1990) https://doi.org/10.1557/JMR.1990.1058.


[30] CJ Humphreys et al., Scanning Microsc Suppl 4 (1990) 185–92. [31] J Cazaux, Ultramicroscopy 60 (1995) doi.org/10.1016/0304- 3991(95)00077-1.


[32] B Wu and AR Neureuther, J Vac Sci Technol B 19 (2001) doi.org/10.1116/1.1421548.


[33] RF Egerton, Microscopy 67 (2018) doi.org/10.1093/jmicro/ dfx089.


[34] RF Egerton and M Malac, Microsc Microanal 10 (Suppl. 2) (2004) https://doi.org/10.1017/S1431927604880541.


[35] F Banhart, Rep Prog Phys 62 (1999) https://doi.org/10.1088/ 0034-4885/62/8/201.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92