Semiconductor Characterization
thickness, this effect may result in junction smear to about 1–2 nm. SCM and SSRM, however, do not have this limitation, and they are surface sensitive techniques with typical spatial resolution of 5 nm and 2 nm, respectively.
Conclusion High spatial resolution electron holography enabled by a
dual lens system is a valuable characterization technique for semiconductor devices, but the sample thickness requirement limits its application to certain types of devices. However, SCM does not have this limitation but has lower spatial resolution. SCM is well suited for p-n junction delineation and is sensitive to carrier concentrations in the range 1016
–1020 cm−3 . Electron
holography is less sensitive in the low-dose region. Electrostatic potential from electron holography can be simulated directly with technology computer-aided design (TCAD) modeling. SSRM detects metallurgical junctions; its sensitivity to car- rier concentrations is in the range 1015
–1021 cm−3 and provides
higher spatial resolution than SCM but does not distinguish between n or p type carriers. Although no quantification was presented in this paper, spreading resistance measurements can be converted to absolute carrier concentration by using SSRM data captured from known calibration samples.
Acknowledgement We would like to acknowledge skillful sample preparation work by K. Barton and C. Molella.
Reference [1] WD Rau et al., Phys Rev Lett 82 (1999)
doi.org/10.1103/ PhysRevLett.82.2614.
[2] YY Wang et al., Ultramicroscopy 101 (2004)
doi.org/ 10.1016/j.ultramic.2004.04.003.
[3] YY Wang et al., JEOL News 39 (2004) 6–9. [4] YY Wang et al., Electron holography method. US Patent 7,015,469 B2 (2006).
[5] YY Wang et al., Ultramicroscopy 124 (2013) doi. org/10.1016/j.ultramic.2012.08.008.
[6] YY Wang et al., Microscopy Today 22 (2014) doi:10.1017/ S1551929514000352.
[7] WD Rau and H Lichte, Introduction to Electron Holog- raphy, E Voelkl et al., eds. Springer, Boston, 1999. doi. org/10.1007/978-1-4615-4817-1_9.
[8] H Lichte, Adv Optical Electron Microsc 12 (1991) https://
doi.org/10.1016/B978-0-12-029912-6.50006-3.
[9] E Voelkl and D Tang, Ultramicroscopy 110 (2010) doi. org/10.1016/j.ultramic.2009.11.017.
[10] M McCartney and M Gajdardziska-Josifovska, Ultrami- croscopy 53 (1994)
doi.org/10.1016/0304-3991(94)90040-X.
[11] YY Wang et al., JEOL News 47 (2012) 9–16. [12] YY Wang et al., Appl Phys Lett org/10.1063/1.4816743.
103 (2013) doi.
[13] YY Wang et al., Appl Phys Lett 106 (2015) doi. org/10.1063/1.4906513.
[14] YY Wang et al., Appl Phys Lett 112 (2018) doi. org/10.1063/1.5009243.
[15] SM Sze et al., Physics of Semiconductor Devices, 2nd John Wiley and Sons, 1981.
44 ed.,
[16] CC Williams et al., Appl Phys Lett 55 (1989) doi. org/10.1063/1.102312.
www.microscopy.org/MandM/2021 www.microscopy-today.com • 2021 May
[17] JM Yang et al., 2011 IEEE Nanotechnol Mater Devices Conf, Oct. 18–21, 2011,
https://doi.org/10.1109/NMDC.2011. 6155352.
[18] Y Taur and TH Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 2013.
[19] P De Wolf et al., J Vac Sci Technol B 14 (1996) doi. org/10.1116/1.588478.
[20] JN Nxumalo et al., 2017 17th International Work- shop on Junction Technology (IWJT) (2017) https://doi. org/10.23919/IWJT.2017.7966506.
[21] GT Reed et al., Proc SPIE 7608 (2010) https://doi. org/10.1117/12.844664.
[22] YY Wang et al., Microsc Microanal 24 (Suppl.1) (2018) doi:10.1017/S1431927618007808.
[23] H. Rucker and B. Heinemann, “SiGe HBT Technology” in Silicon Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications, N Rinaldi and M Schröter, eds., River Pub- lishers, Denmark, 2018, pp.11–54.
[24] YY Wang et al., 2017 17th International Workshop on Junc- tion Technology (IWJT) (2017)
https://doi.org/10.23919/ IWJT.2017.7966507.
[25] YY Wang et al., 2018 18th International Workshop on Junc- tion Technology (IWJT) (2018)
https://doi.org/10.1109/ IWJT.2018.8330281.
[26] JN Nxumalo et al., 2018 18th International Workshop on Junction Technology (IWJT) (2018)
https://doi.org/10.1109/ IWJT.2018.8330282.
REGISTER NOW
PLENARY SPEAKERS COVID-19 VACCINE DEVELOPERS Kizzmekia S. Corbett, PhD
Coronavirus Vaccines & Immunopathogenesis Team Vaccine Research Center National Institute of Allergy and Infectious Diseases, National Institutes of Health
Jason McLellan, PhD
Department of Molecular Biosciences Department of Chemistry College of Natural Sciences University of Texas at Austin
2020 KAVLI AWARDEE
Ondrej Krivanek, PhD President, Nion Co. Affiliate Professor at Arizona State University
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92