search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Sideband Kelvin Probe Force Microscopy


Tis method uses two lock-in amplifiers (Figure 2B) to lock on the sideband frequencies. Figure 2B shows that the second lock-in amplifier modulates the leſt sideband, while the third modulates the right sideband. Te surface potential is obtained by averaging the DC voltage feedback from both sideband frequencies [1].


Electrostatic Force Microscopy (EFM) Amplitude Sensitivity Te KPFM signal-to-noise ratio reflects the magnitude of


the electrostatic interaction, or EFM amplitude sensitivity. Te higher the EFM amplitude sensitivity, the higher the KPFM signal-to-noise ratio response can be. Te EFM amplitude sensitivity can be defined as ΔEFM amplitude / Δ tip bias. When the cantilever’s resonance frequency equals the electrical driving frequency, the EFM amplitude can be defined as:


XV V VQ k


=+ δ


δ() Figure 1: Contact potential difference between an AFM tip and sample.


Te sideband frequencies of the mechanical oscillation and the local interaction of the tip apex allow sideband KPFM to accurately measure the surface potential with an increased resolution compared to off-resonance KPFM. When performing sideband KPFM, instead of using a frequency


of 17 kHz, the KPFM mode works with the sideband’s frequencies, usually 1–5 kHz off from the cantilever’s mechanical resonance.


c z


CPDDC AC (3)


where X is the amplitude of the cantilever displacement, Q is the cantilever’s Q factor, and k is the spring constant of the cantilever.


Tereby, the EFM amplitude is directly proportional to the VAC and inversely proportional to the cantilever’s spring constant. Another factor that affects the EFM amplitude sensitivity is the laser displacement on the photo detector (Δa) [4]. It is defined as:


∆a = 3


L L Zx


∆ C (4)


Figure 2: Sideband KPFM feedback loop: a) off-resonance KPFM loop; b) sideband KPFM loop. 2021 May • www.microscopy-today.com 53


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92