Selecting the best capillary column for an analysis can be an uncertain and sometimes difficult task. While there are no foolproof techniques, shortcuts, tricks or secrets to column selection, there are some guidelines and concepts that simplify the process. There are four major column parameters to consider: stationary phase, diameter, length, and film thickness.
Selecting Stationary Phases
Choosing the best stationary phase is the most important decision when selecting a capillary column. Unfortunately, it is also the most difficult and ambiguous decision. The most reliable method is to consult the large collection of example applications provided by column manufacturers and suppliers, GC manufacturers and in published literature. While an exact example application may not be available, enough information can usually be obtained to simplify the decision or reduce the number of potential columns. The most difficult situation is when no previous information is available. Stationary phase selection is much easier even if only one chromatogram is available for all or most of the sample compounds.
The concepts of stationary phase selectivity and polarity are very useful when selecting stationary phases. For best performance, start with the general purpose Agilent J&W Ultra Inert 1ms and 5ms columns to get the lowest column bleed and column activity for a wide range of analytes, including active compounds and trace level samples.
Synonymous use of the terms polarity and selectivity is not accurate, but it is very common. Selectivity is determined by the physicochemical interactions of the solute molecules with the stationary phase. Polarity is determined by the structure of the stationary phase. Polarity does have an effect on separation; however, it is only one of the many stationary phase properties that influence peak separation (see the next section on polarity).
Selectivity can be thought of as the ability of the stationary phase to differentiate between two solute molecules by differences in their chemical or physical properties. Separation is obtained if the interactions between the stationary phase and solutes are different. For liquid or gum stationary phase (polysiloxanes and polyethylene glycols), there are three major interactions: dispersion, dipole, and hydrogen bonding. The following is a simplified and condensed explanation of the interactions for polysiloxane and polyethylene glycol stationary phases.
12
Order online at
www.agilent.com/chem/store
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168