This page contains a Flash digital edition of a book.
techview


Technology for High-Production Tapping


T


raditionally in high-volume thread production, pro- ductivity can be limited by machine tool spindle rota- tional speeds and feeds. Synchronous spindles often


do not achieve the programmed rotational speeds, especially when using small cutting tool diameters. The programmed cutting speed may also result in increased tool and energy costs due to tool failure. While more than half of the energy consumed by a machining center is required for the cooling system, high-speed rigid tapping operations can contribute a signifi cant amount to the overall energy consumption. Today, these challenges have been answered with in- novative toolholding solutions. Emuge’s new technology, the Speedsynchro Tool Holder, is capable of keeping up with the programmed spindle speeds, featuring an integrated transmission of 1:4.412 to optimize thread production on CNC machines with synchronous spindles. Combining the integrated transmission with minimum-length compensation offers a way to effi ciently work with high cutting speeds and a relatively low synchronous machine tool speed, compensat- ing for synchronization errors during the threading process. The results are signifi cant time and money savings, particu- larly in high-production tapping operations. This technology makes it possible to run machine spindles in a noncritical, energy saving rpm range during thread production, increase overall tool life due to an Emuge-patented minimal length compensation, and lower cooling costs with an optional Minimal Quantity Lubrication (MQL) implementation, all of which can be used to show considerable cost savings in the competitive automotive industry. Additionally, up to 40% time savings can be achieved due


to signifi cantly shortened thread-production cycles result- ing from the combined fast acceleration and cutting speeds facilitated by an integrated transmission. The time savings substantially increases the number of tapped holes achieved in a given operation and is especially effective in high-production tapping. Tool life and thread surface quality are both optimized. Exact thread depths can be achieved since the toolholder does not reverse direction of rotation. It supports a maximum


Jose Alvarenga


Tap Holder Product Manager Emuge Corp. West Boylston, MA


spindle speed of 2000 rpm and a maximum tapping speed of 8824 rpm.


In one example, in order to compensate for projecting edges and taps of different lengths, three tapping attach- ments were being used in the manufacturing of gearboxes. The larger the projecting edges, the more rotational speed had to be reduced. A Speedsynchro toolholder was substitut- ed for the three tapping attachments, making use of a short tool extension to maintain rotational speed. The minimum length compensation capability improved the quality of the threads by compensating any synchronization errors of the machine and ensuring an even load on the cutting edges of the taps. At the same time the toolholder guaranteed a con- sistent depth of threads as well as reduced cycle times and a decrease in required maintenance.


This toolholder technology


makes it possible to run machine spindles in a noncritical, energy saving rpm range during thread production


In another application example, comparing a standard


Synchro cycle with the Speedsynchro toolholder resulted in a 39% time savings and 1750 fewer production hours when forming 29,000 threads per day in a six-day-a-week production schedule. After 500,000 threads, there was little or no wear in the holder components, allowing the holder to run for another half a million threads without a set maintenance schedule.


In addition to the right toolholder, selecting the right tap


or thread mill for the high-production application at hand is critical to produce optimal results. The importance of paying close attention and examining your application’s needs and then taking the time to get advice from cutting tools experts is vital for success.


39 — Motorized Vehicle Manufacturing 2015


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208