tackle the shortcomings associated with sepsis diagnosis, and photonics diagnostic systems are being developed that promise to reduce the time it takes to treat the condition. According to Professor Popp, an
effective system that would ensure the early diagnosis and treatment of sepsis would be, ‘a multi-parameter device that only needs minimal blood or other body liquids… to quickly (in less than five hours) identify the sepsis-causing pathogens, their antibiotic resistance, and the specific host for choosing the appropriate initial antibiotic therapy to save lives in intensive care units,’ he said. HemoSpec is one such project working towards this goal, aiming to develop an innovative photonic device for the early, fast and reliable medical diagnosis of sepsis using
Currently, there
is no really good test system that can unequivocally diagnose sepsis at an early stage
only a minimal amount of a patient’s blood. Coordinated by the IPHT, the EU project involves two hospitals, Germany’s Centre for Sepsis Control and Care (CSCC), as well as four companies: France’s Horiba Scientific; biomedical software company, Bmd (Portugal); ViroGates, an international Biotech company (Denmark); and biomedical instrument manufacturer, Data Med (Italy).
HemoSpec will combine three complementary biophotonic technologies into one device: automated microfluidic sample handling with integrated holographic blood count; simultaneous multiplex fluorescence biomarker sensing; and detailed Raman spectroscopic leukocyte characterisation. As part of the project, the IPHT is developing a digital inline holographic microscope for the blood count. The institute is also developing Raman spectroscopy
www.electrooptics.com | @electrooptics
techniques, whereby light is sent through the body fluid sample, and as the light hits a pathogen, it is scattered, creating a characteristic fingerprint. The pathogen can then be identified against a Raman spectroscopic pathogen database. This Raman method can also be used to determine the overall chemical composition and molecular structure of the blood cells, which is useful for differentiating patients from varying disease groups, including inflammatory response syndrome, severe sepsis, and septic shock. The advantage to Raman
spectroscopy is that it can identify even single bacteria, and therefore does not require cell cultivation steps. ‘We could demonstrate the unique potential of Raman spectroscopy to bypass time-consuming cultivation procedures, enabling an identification of sepsis pathogens directly out of body liquids in less than three hours,’ said Professor Popp.
Such a short analysis time has been achieved through the development of an automated Raman setup for use in clinics, the BioParticle Explorer, together with innovative pathogen isolation strategies, such as the use of dielectrophoresis (DEP) Raman chips. DEP chips allow for the analysis of extremely small sample sizes, through the miniaturisation of complex chemical and physical procedures onto a single microchip-based device. The Raman setup has also been used to investigate a bacteria’s potential resistance, so that the patient can be treated with a targeted antibiotic that reliably kills the pathogen. ‘Not only has the identification been realised, but also the characterisation of bacteria-drug interaction as a first step towards antibiotic susceptibility testing. Changes in the bacterial Raman spectra due to antibiotic treatment can be identified already after 30 minutes of treatment,’ Professor Popp remarked.
In addition, the device will not just be faster than existing diagnostic methods, but will provide doctors with a much more definitive result, according to Professor Popp. ‘Most
➤
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56