This page contains a Flash digital edition of a book.
Review Khot, Sharma & Shah


A PK PD Kill Growth Tumor


B PK PD Transduction Growth Tumor Kill Signal Cell death C PK PD Kill Growth Tumor Tumor Tumor Transit compartments


Figure 6. PD models for antibody–drug conjugates. (A) The direct kill model. This model assumes that the cancer cells die immediately upon exposure to the antibody–drug conjugate (ADC). (B) The signal-distribution model. This model assumes that following the exposure of ADC, there is a delay in the implementation of the killing signal that is associated with the signal transduction process. (C) The cell-distribution model. This model assumes that following exposure of the ADC, a portion of the growing cells transfers to a series of nongrowing compartments before they are killed eventually.


desirable. In order to accomplish this, either one needs to measure intracellular concentrations of unconju- gated drug in the tumor, which is extremely challeng- ing, or needs to have a PK model that can accurately predict intracellular concentrations of unconjugated drug in the tumor. For the latter option, the tumor PK model for ADC discussed earlier (Figure 4) [8,9] can be employed, and combined with a PD model to characterize the efficacy of ADCs. We have developed one such PK–PD model for ADC by combining the systems PK model developed for ADC with a variant


1642 Bioanalysis (2015) 7(13)


of CDM [8,9]. The model uses intracellular concentra- tions of unconjugated drug to drive the efficacy. Using brentuximab-vedotin the ability of this model to char- acterize as well as predict the efficacy of ADC has been investigated. The PK–PD model was initially used preclinically to characterize the efficacy of brentux- imab-vedotin in several xenograft models following different dosing regimens. From the preclinical data the model was able to estimate the efficacy parameter for the unconjugated drug in the tumor compartment. Since the PK model employed for developing the pre-


future science group Tumor Cell death Signal


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154