This page contains a Flash digital edition of a book.
ELISA microplate Research Article


To effectively immobilize proteins on these types of surfaces, the coupling buffer is a key factor. Amine- free buffers should be utilized to avoid the competitive reaction, and alkaline pH could facilitate the coupling reaction. To find a high performance buffer for immo- bilizing the protein CD86 on these three surfaces, sev- eral buffer systems including 0.1 M phosphate saline buffer at pH 7.4, 0.5 M sodium bicarbonate at pH 8.7 and 0.1M borate buffer at pH 9.5 were investigated. As predicted, higher pH buffer gave higher response due to improved coupling efficiency. 0.1 M borate buffer at pH 9.5 was eventually used for all three surfaces in the study. GBO plates have unmodified polystyrene surface, therefore immobilization on this surface is through pas- sive adsorption. Among the four buffer solutions tested with this plate, 0.5 mol/l sodium bicarbonate was found slightly better than others. Immobilization time was investigated from 0.5 to


4 h with 0.5 h intervals for all the surfaces. In addi- tion, the magnetic beads were checked overnight.


A


3.0 2.5 2.0 1.5 1.0 0.5 0.0


C GBO plate Key term


Immobilization capacity: Maximum amount of ligand that can be immobilized on the surface of one plate well.


The optimal immobilization time for the plates was between 1 to 2 h and 4 h for the magnetic beads. The temperature was investigated at 37°C and room tem- perature. No significant difference was found with these two different settings, and 37°C was used in the study.


Immobilization capacity With maximizing the assay sensitivity as the primary goal, we sought to maximize the amount of capture protein on the various surfaces. For MA plates, the product information showed that MA plate had bind- ing capacity of approximately 125 pmol biotin pentyl- amine (328 Da)/well. Taking this as a reference and assuming the binding behavior of CD86 protein (mass 38 kDa) is similar to that of biotin pentylamine, the


B


200 µl serum, y = 0.0064x + 0.0432, R2


= 0.9925


100 µl serum + 100 µl PBS, y = 0.0031x + 0.003, R2


= 0.9972


0100 200 300 400 500 600 700 800 900 1000 Analyte serum concentration (ng/ml)


3.0 4.0


2.0 1.0 0.0


0 100 200 300 400 500 600 700 800 900 1000 Analyte serum concentration (ng/ml)


Figure 1. Capture capability of CD86 immobilized microplates: (A) unmodified, (B) maleic anhydride-activated and (C) Nunc® Immobilizer™ Amino. Solid lines indicate capture linearly relates to drug concentration, and dashed lines indicate the linearity disappears and capture capacity reached. Data are the average of three measurements. Linear regression equations are included in the diagrams. GBO: Unmodified; MA: Maleic anhydride-activated; NIA: Nunc®


Immobilizer™ Amino; PBS: Phosphate-buffered saline. future science group www.future-science.com 311 NIA plate


0.30 0.25 0.20 0.15 0.10 0.05 0.00


MA plate


200 µl serum, y = 0.0027x + 0.0015, R2


= 0.9958


100 µl serum + 100 µl PBS, y = 0.0015x + 0.0074, R2


50 µl serum + 150 µl PBS, y = 0.0009x + 0.0037, R2


0100 200 300 400 Analyte serum concentration (ng/ml) 200 µl serum, y = 0.0062x + 0.0408, R2 = 0.9931 50 µl serum, y = 0.0033x + 0.065, R2 = 0.9942


100 µl serum + 100 µl PBS, y = 0.0039x + 0.0348, R2


= 0.9904 = 0.9916 = 0.9909 500


Analyte/IS peak area ratio


Analyte/IS peak area ratio


Analyte/IS peak area ratio


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154