This page contains a Flash digital edition of a book.
Sponsored Content


CASE STUDY 3: BETTER DATA WITH FEWER MICE AND LESS REAGENTS


Alison Joyce and her colleagues at Pfizer understood that an immunoassay that consumes low sample volumes would provide major benefits in pre-clinical work by enabling serial sampling of fewer animals to generate better data for more analytes and using smaller amounts of precious material (Ref 8). They decided to test how the low sample consumption of Gyrolab could help them in comparing serial sampling and composite sampling to generate a PK time concentration profile of human IgG control antibody in mice, and also test serial sampling in two studies:


1. Ranking six potential drug candidates using PK profiles of precious drug material in discovery


2. A PK study using an expensive genetically-engineered mouse model


Their serial sampling technique involved taking just 10 µL of blood from the tail vein of individuals at up to 12 time points. In contrast, their traditional sampling method involved either euthanasia followed by sampling 700 µL blood from the cardiac ventricle, or retro-orbital sampling under anesthetic and only once for each eye.


RESULTS


COMPARABLE PK PROFILES Their study showed that serial and composite sampling methods gave comparable results for PK profiles of human IgG control antibody and that there were no matrix and sampling site effects on drug concentrations.


BETTER DATA


The value of serial sampling was clearly demonstrated in Case Studies 1 and 2, by low inter-subject variability (CV% 9–50% and 15–40%, respectively), compared to variations in the range 5–150% for PK studies in their laboratory that involved traditional composite sampling.


FEWER ANIMALS. LESS MATERIAL. LESS TIME


The low sample consumption of the Gyrolab system enabled serial sampling, which in turn considerably reduced the number of animals and consumption of material consumption compared to composite sampling:


Study 1:


36 mice instead of 180 75% savings in drug candidate 40% savings in length of time for in-life study


Study 2: 80% less individuals of a precious animal model


Alison Joyce and her colleagues also appreciated other benefits of Gyrolab technology: the short assay time, automation to save analyst time, broad dynamic range that minimized re-assaying, and the low reagent consumption compared to traditional ELISA.


1,000,000 100,000 x


10,000 x 1,000 x x 100 x 10 1


01020304050607080 Time (hr)


Individual animals for one potential drug candidate in Case Study 1 showed very similar PK profiles. Adapted from Figure 4a, Ref 8.


AUTHORS’ CONCLUSIONS


• Mouse serial sampling is particularly valuable when the study involves:


- Limited supply of drug - Specialized animal models


• Overall efficiencies of 40–80% were gained by serial sampling in:


- Study cost - Animal usage - Study length - Drug conservation


• Inter-subject variability across PK parameters was less than 30%


• Gyros technology brings efficiency with:


- short assay time - automation - broad dynamic range reducing re-assay - lower reagent costs


D0024402/A


5


Conc. (ng/mL)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154