This page contains a Flash digital edition of a book.
MALDI-MS imaging for the study of tissue pharmacodynamics & toxicodynamics Perspective


MS shotgun proteomics to investigate protein induction in a murine fibrosarcoma model following treatment with a vascular disrupting agent. Proteomics 14(7–8), 890–903 (2014).


• Contemporary proteomic approaches for pharmacological investigations showing protein induction changes in a tumor model associated with necrotic hemorrhaging and stress in response to combretastin A4-phosphate treatment.


36 Fehniger TE, Vegvari A, Rezeli M et al. Direct demonstration of tissue uptake of an inhaled drug: proof- of-principle study using matrix-assisted laser desorption ionization mass spectrometry imaging. Anal. Chem. 83(21), 8329–8336 (2011).


37 Marko-Varga G, Fehniger TE, Rezeli M, Dome B, Laurell T, Vegvari A. Drug localization in different lung cancer phenotypes by MALDI mass spectrometry imaging. J. Proteomics 74(7), 982–992 (2011).


38 Prideaux B, Dartois V, Staab D et al. High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal. Chem. 83(6), 2112–2118 (2011).


• Highlights the benefits of the added selectivity and sensitivity of multiple reaction monitoring with MALDI- MS imaging for mapping the distribution of moxifloxacin in lung and granuloma tissue, with the generation of high- quality images.


39 Zecchi R, Trevisani M, Pittelli M et al. Impact of drug administration route on drug delivery and distribution into the lung: an imaging mass spectrometry approach. Eur. J. Mass Spectrom. (Chinester, Eng.) (19), 475–482 (2013).


40 Kallback P, Shariatgorji M, Nilsson A, Andren PE. Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J. Proteomics 75(16), 4941–4951 (2012).


•• An enhanced computational and experimental technique for the quantification of drugs and endogenous species in tissue by incorporating tissue-specific isotope-labeled standards, and improving peak picking capabilities within compressed MS imaging datasets.


41 Pirman DA, Yost RA. Quantitative tandem mass spectrometric imaging of endogenous acetyl-L-carnitine from piglet brain tissue using an internal standard. Anal. Chem. 83(22), 8575–8581 (2011).


42 Bunch J, Clench MR, Richards DS. Determination of pharmaceutical compounds in skin by imaging matrix- assisted laser desorption/ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 18(24), 3051–3060 (2004).


43 Hart PJ, Francese S, Claude E et al. MALDI-MS imaging of lipids in ex vivo human skin. Anal.Bioanal Chem. 401(1), 115–125 (2011).


44 EnthalerB, Pruns JK, Wessel S et al. Improved samplepreparation for MALDI-MSI of endogenous compounds in skin tissue sections andmapping of exogenous active compounds subsequent to ex vivo skin penetration. . Anal. Bioanal Chem. 402(3), 1159–1167 (2012).


45 Sato J, Denda M, Nakanishi J, Nomura J, Koyama J. Cholesterol sulfate inhibits proteases that are involved in desquamation of stratum corneum. J. Invest. Dermatol. 111(2), 189–193 (1998).


46 Bouwstra JA, Gooris GS, Dubbelaar FE, Ponec M. Cholesterol sulfate and calcium affect stratum corneum lipid organization over a wide temperature range. J. Lipid Res. 40(12), 2303–2312 (1999).


47 Francese S, Lambardi D, Mastrobuoni G et al. Detection of honeybee venom in envenomed tissues bydirect MALDI MSI. J. Am. Soc. Mass Spectrom. 20(1), 112–123 (2009).


48 Taverna D, Nanney LB, Pollins AC et al. Spatial mapping by imaging mass spectrometry offers advancements for rapiddefinition of human skin proteomic signatures. Exp. Dermatol. 20(8), 642–647 (2011).


49 Hart PJ, Francese S, Woodroofe MN et al. Matrixassisted laser desorption ionisation ion mobility separation mass spectrometryimaging of ex vivo human skin. International Journal of Ion MobilitySpectrometry. 16, 71–83 (2013).


50 Enthaler B, Trusch M, Fischer M et al. MALDI imaging in human skin tissue sections: focus onvarious matrices and enzymes. Anal. Bioanal Chem. 405(4), 1159–1170 (2013).


51 Marshall P, Toteu-Djomte V, Bareille P et al. Correlation of skin blanching and percutaneous absorption for glucocorticoid receptor agonists by matrix-assisted laser desorption ionization mass spectrometry imaging and liquid extraction surface analysis with nanoelectrospray ionization mass spectrometry. Anal. Chem. 82(18), 7787–7794 (2010).


• MSimaging is shown to be apowerful platform for observing the site-specific penetration depth of a xenobiotic and pharmacodynamic/toxicodynamic responses across skin tissue.


52 Lietz CB, Gemperline E, Li L. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites. Adv. Drug Deliv. Rev. 65(8), 1074–1085 (2013).


53 Nilsson A, Forngren B, Bjurstrom S et al. In situ mass spectrometry imaging and ex vivo characterization of renal crystalline deposits induced in multiple preclinical drug toxicology studies. PLoS ONE 7(10), e47353 (2012).


54 Goodwin RJ, Scullion P, Macintyre L et al. Use of a solvent-free dry matrix coating for quantitative matrix-assistedlaser desorption ionization imaging of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4- carboxylatein rat brain and quantitative analysis of the drug from laser microdissectedtissue regions. Anal. Chem. 82(9), 3868–3873 (2010).


future science group


www.future-science.com


101


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154