8. Algebra Example 3:
a = 2, b = 3, find a value for: (i) a + b (ii) 2a + b (iii) a2
= 2 + 3 = 5 + b =22
= 2(2) + 3 = 4 + 3 = 7 + 3 = 4 + 3 = 7
(iv) 3(a + b) = 3(2 + 3) = 3(5) = 15 (v) 4a2
+ 2b = 4(2)2 + 2(3) = 4(4) + 2(3) = 16 + 6 = 22
Multiplication:
When numbers are multiplied, a new number is obtained. But when letters representing unknowns or variables are multiplied, we do not get a new letter. When two or more of the same letter are multiplied we simply square it or cube it and so on.
Example 4:
(i) a × a = a2 (ii)
c × c × c = c3
(iii) 3a × 2a = 6a2 (iv) 5 × a = 5a (v) a × b = ab
Adding & Subtraction: Letters representing unknowns or variables can be added and subtracted.
Let a = cost of one apple 3a = cost of three apples a + 3a = 4a = cost of four apples.
Example 5:
(i) a + 4a = 5a (ii) 2a + 3a + 3b = 5a + 3b (iii) 3a + 5a + 4a2 (iv) 4c2
+ 2a2 (v) a + b + a2
+ 3c + c = 4c2 + b2
+ 4c + 2a + 3b = 3a + 4b + a2 (vi) 5a + 3b –2a –6b = 3a –3b + b2
+ b = 8a + 6a2
+ b
81
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168