search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Transition Year Maths Example 3 x x3


–3x2 –4x +12 y


Draw a graph of the curve y = x3 from x = –3 to x = +3


–3


–27 –27 12 12


–30


–2 –8


–12 8


12 0


–1 –1 –3 4


12 12 y


0 0 0 0


12 12


–3x2 –4x + 12


1 1


–3 –4 12 6


2 8


–12 –8 12 0


3 27


–27 –12 12 0


x


Closed Shapes


When both the x and the y are squared, new shapes are formed. Square roots are estimated to one place of decimals.


1. Circles: x2 + y2 = 9. Find points on the graph.


Let x = 0 ⇒ y2 Let y = 0 ⇒ x2


Let x = 1 ⇒ 1 + y2 Let y = 1 ⇒ x2


Let x = –1 ⇒ 1 + y2 Let y = –1 ⇒ x2


= 9 ⇒ y = +3 or y = –3 ⇒ (0,3) and (0,–3) are on the graph. = 9 ⇒ x = +3 or x = –3 ⇒ (3, 0) and (–3, 0) are on the graph. = 9 ⇒ y2


+ 1 = 9 ⇒ x2 = 9 ⇒ y2


+1 = 9 ⇒ x2


± 8 ± 8


= 8 ⇒, 2·8) and (–1,–2·8) are on the graph. = 8 ⇒ (2·8,–1) and (–2·8,–1) are on the graph.


= 8 ⇒ y = ⇒(1, 2·8) and (1, –2·8) are on the graph. = 8 ⇒ x = ⇒ (2·8,1) and (–2·8,1)


38


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168