11. Combinations and Permutations Example 5:
Fred has a voucher to pick any two of the top 10 PS4 games! How many different combinations of 2 games can he pick?
10
C = × × ==
2
10 9 21
90 2 45
PROJECT 11.1 Games – Permutations
The top ten PS4 games are called: A, B, C, D, E, F, G, H, I, J. Write down all the possible ways in which Fred can pick two of them! If Example 6 is correct it should be 45.
Example 6:
From 10 games, how many ways can: 0 games be picked =
10 C 1= 0
1 game be picked = 2 games be picked = 3 games be picked = 4 games be picked = 5 games be picked = 6 games be picked = 7 games be picked = 8 games be picked = 9 games be picked = 10 games be picked =
10
10 C 1
10 2 1==1
10 9 21
10
C = × × ==
10
C = ×× ×× =
3 10 4
90 2 45
10 9 8 32 1 120
C = ×× × ×× × =
10 9 8 7 43 2
10 5 ××3 1 210
10 9 8 7 6 C 54= × ×××
10 C6 10 7 3 32 1 252×× =
= × ××× × ×× × ×
10 9 8 7 6 5 65 4
2× =
10 98 7 6 54 C 7 6 54 32 1 120
= × ××× × × ××× × ×
10 8 × =
C 10= × ××× × × × ×× × × × × × =
98 7 6 54 3 87 6 5 4 3 2 C9 1 45
10 = ××10 9 87 6 5 4 3 2 8
10 C10 = × 9
98 7 6 54 32 1 10 ×× × × × ×
10 98 7 6 54 32 1 1 ××× × × × × ×
××× × × × × × = 10 98 7 6 54 32 1
× ××× × × × × × = 107 1 210
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168